scholarly journals Study on the theory of three-dimensional limit analysis of soil and practical calculation

2018 ◽  
Vol 175 ◽  
pp. 03013
Author(s):  
Bin Lia ◽  
Jianbao Fu

Based on the stress analysis of a point in space, the stress analysis of a point on a surface is performed, and then the relationship among the normal stress, the shear stress, and the stress component of a point on a surface and the first order partial derivative of the surface equation is deduced. Equilibrium equations of soil columns between the sliding surface and the top surface of the slope are established, which include differential equilibrium equation of force, equilibrium equation of force, and equilibrium equation of moment. These equilibrium equations and Coulomb yield condition can form the fundamental equations of three-dimensional slope stability analysis. Applying the supposition similar to that applied in the simplified Bishop method, a kind of three-dimensional slope analysis method can be obtained. An example is presented to show that the computation method is reasonable and applicable.

2017 ◽  
Vol 3 (4) ◽  
pp. 89-106
Author(s):  
Sergei E Alexandrov ◽  
Elena A Lyamina

The system of equations comprising the Mohr-Coulomb yield condition and the stress equilibrium equations may be studied independently of the flow law. This system of equations is hyperbolic. Accordingly, to solve the aforementioned system of equations, it is reasonable to apply the method of characteristics. In the special case of plasticity theory for materials whose yield criterion does not depend on the average stress, two methods are used to construct an orthogonal net of characteristics and to determine the stress field: the R-S method and Mikhlin’s coordinate method. In the case of the Mohr-Coulomb yield condition, the angle between the characteristic directions depends on the internal friction angle. Therefore, the above-mentioned methods should be generalised in accordance with this property of characteristics. Purpose. In the case of Plasticity theory for materials whose yield strength does not depend on the average stress, to calculate the stress filed, Mikhlin’s coordinate method is widely used. The purpose of this study is to generalise this method for the equation system consisting of the Mohr-Coulomb yield criterion and the pressure equilibrium equations. Methods. The geometrical properties of the characteristics of the equations’ system consisting of the Mohr-Coulomb yield condition and the equilibrium equations are used to introduce the generalised Mikhlin coordinates. Results. It’s been pointed out that solving equation system consisting of the MohrCoulomb yield condition and equilibrium equation comes to solving equation of telegraphy and to subsequent integration. Practical Significance. The developed method of system of equations’ solution, consisting of the Mohr-Coulomb yield condition and equilibrium equation enables obtaining high precision solutions at insignificant computer time expenditures.


2005 ◽  
Vol 2005 (9) ◽  
pp. 1393-1404 ◽  
Author(s):  
Paul Bracken

The relationship between solutions of the sinh-Laplace equation and the determination of various kinds of surfaces of constant Gaussian curvature, both positive and negative, will be investigated here. It is shown that when the metric is given in a particular set of coordinates, the Gaussian curvature is related to the sinh-Laplace equation in a direct way. The fundamental equations of surface theory are found to yield a type of geometrically based Lax pair for the system. Given a particular solution of the sinh-Laplace equation, this Lax can be integrated to determine the three fundamental vectors related to the surface. These are also used to determine the coordinate vector of the surface. Some specific examples of this procedure will be given.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1337-1345
Author(s):  
Chuan Zhao ◽  
Feng Sun ◽  
Junjie Jin ◽  
Mingwei Bo ◽  
Fangchao Xu ◽  
...  

This paper proposes a computation method using the equivalent magnetic circuit to analyze the driving force for the non-contact permanent magnet linear drive system. In this device, the magnetic driving force is related to the rotation angle of driving wheels. The relationship is verified by finite element analysis and measuring experiments. The result of finite element simulation is in good agreement with the model established by the equivalent magnetic circuit. Then experiments of displacement control are carried out to test the dynamic characteristic of this system. The controller of the system adopts the combination control of displacement and angle. The results indicate that the system has good performance in steady-state error and response speed, while the maximum overshoot needs to be reduced.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


2021 ◽  
Vol 2 (1) ◽  
pp. 63-80
Author(s):  
Noushad Bin Jamal Bin Jamal M ◽  
Hsiao Wei Lee ◽  
Chebolu Lakshmana Rao ◽  
Cemal Basaran

Traditionally dynamic analysis is done using Newton’s universal laws of the equation of motion. According to the laws of Newtonian mechanics, the x, y, z, space-time coordinate system does not include a term for energy loss, an empirical damping term “C” is used in the dynamic equilibrium equation. Energy loss in any system is governed by the laws of thermodynamics. Unified Mechanics Theory (UMT) unifies the universal laws of motion of Newton and the laws of thermodynamics at ab-initio level. As a result, the energy loss [entropy generation] is automatically included in the laws of the Unified Mechanics Theory (UMT). Using unified mechanics theory, the dynamic equilibrium equation is derived and presented. One-dimensional free vibration analysis with frictional dissipation is used to compare the results of the proposed model with that of a Newtonian mechanics equation. For the proposed entropy generation equation in the system, the trend of predictions is comparable with the reported experimental results and Newtonian mechanics-based predictions.


Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 296
Author(s):  
Richard H. Groshong

This paper is a personal account of the origin and development of the twinned-calcite strain gauge, its experimental verification, and its relationship to stress analysis. The method allows the calculation of the three-dimensional deviatoric strain tensor based on five or more twin sets. A minimum of about 25 twin sets should provide a reasonably accurate result for the magnitude and orientation of the strain tensor. The opposite-signed strain axis orientation is the most accurately located. Where one strain axis is appreciably different from the other two, that axis is generally within about 10° of the correct value. Experiments confirm a magnitude accuracy of 1% strain over the range of 1–12% axial shortening and that samples with more than 40% negative expected values imply multiple or rotational deformations. If two deformations are at a high angle to one another, the strain calculated from the positive and negative expected values separately provides a good estimate of both deformations. Most stress analysis techniques do not provide useful magnitudes, although most provide a good estimate of the principal strain axis directions. Stress analysis based on the number of twin sets per grain provides a better than order-of-magnitude approximation to the differential stress magnitude in a constant strain rate experiment.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 873
Author(s):  
Dandan Xia ◽  
Liming Dai ◽  
Li Lin ◽  
Huaifeng Wang ◽  
Haitao Hu

The field measurement was conducted to observe the wind field data of West Pacific typhoon “Maria” in this research. With the application of ultrasonic anemometers installed in different heights (10 m, 80 m, 100 m) of the tower, the three dimensional wind speed data of typhoon “Maria” was acquired. In addition, vane-type anemometers were installed to validate the accuracy of the wind data from ultrasonic anemometers. Wind characteristics such as the mean wind profile, turbulence intensity, integral length scale, and wind spectrum are studied in detail using the collected wind data. The relationship between the gust factor and turbulence intensity was also studied and compared with the existing literature to demonstrate the characteristics of Maria. The statistical characteristics of the turbulence intensity and gust factor are presented. The corresponding conclusion remarks are expected to provide a useful reference for designing wind-resistant buildings and structures.


Sign in / Sign up

Export Citation Format

Share Document