scholarly journals Characteristic research on lithium iron phosphate battery of power type

2018 ◽  
Vol 185 ◽  
pp. 00004
Author(s):  
Yen-Ming Tseng ◽  
Hsi-Shan Huang ◽  
Li-Shan Chen ◽  
Jsung-Ta Tsai

In this paper, it is the research topic focus on the electrical characteristics analysis of lithium phosphate iron (LiFePO4) batteries pack of power type. LiFePO4 battery of power type has performance advantages such as high capacity, lower toxicity and pollution, operation at high temperature environment and many cycling times in charging and discharge and so on. The charging and discharging characteristics for LiFePO4 batteries of power type pack have been verified and discussed by the actual experiment. Base on the 12V10AH LiFePO4 battery was proceeding on charging and discharging test with over high current value and which investigate the parameters such as the internal resistance, the related charge and discharge characteristics of LiFePO4 battery pack, the actual value of internal voltage and internal resistance of the battery pack and by polynomial mathmatic model to approach the accury of inner resistance on discharging mode.

2019 ◽  
Vol 10 (4) ◽  
pp. 69
Author(s):  
Ajeet Babu K. Parasumanna ◽  
Ujjwala S. Karle ◽  
Mangesh R. Saraf

Battery packaging in a vehicle depends on the cell chemistry being used and its behavior plays an important role in the safety of the entire battery pack. Chemical degradation of various parts of a cell such as the cathode or anode is a concern as it adversely affects performance and safety. A cell in its battery pack once assembled can have two different mechanical abuse condition. One is the vibration generated from the vehicle and the second is the intrusion of external elements in case of accident. In this paper, a commercially available 32,700 lithium ion cell with lithium iron phosphate (LFP) chemistry is studied for its response to both the abuse conditions at two different states of charge (SoC). The primary aim of this study is to understand their effect on the surface morphology of the cathode and the anode. The cells are also characterized to study impedance behavior before and after being abused mechanically. The cells tested for vibration were also analyzed for dynamic stiffness. A microscopy technique such as scanning electron microscopy (SEM) was used to study the surface morphology and electrochemical impedance spectroscopy (EIS) characterization was carried out to study the internal resistance of the cell. It was observed that there was a drop in internal resistance and increase in the stiffness after the cells subjected to mechanical abuse. The study also revealed different morphology at the center and at the corner of the cell subjected to nail penetration at 50% SoC.


2020 ◽  
Vol 117 (42) ◽  
pp. 26053-26060
Author(s):  
Qing Zhao ◽  
Xiaotun Liu ◽  
Jingxu Zheng ◽  
Yue Deng ◽  
Alexander Warren ◽  
...  

In the presence of Lewis acid salts, the cyclic ether, dioxolane (DOL), is known to undergo ring-opening polymerization inside electrochemical cells to form solid-state polymer batteries with good interfacial charge-transport properties. Here we report that LiNO3, which is unable to ring-open DOL, possesses a previously unknown ability to coordinate with and strain DOL molecules in bulk liquids, completely arresting their crystallization. The strained DOL electrolytes exhibit physical properties analogous to amorphous polymers, including a prominent glass transition, elevated moduli, and low activation entropy for ion transport, but manifest unusually high, liquidlike ionic conductivities (e.g., 1 mS/cm) at temperatures as low as −50 °C. Systematic electrochemical studies reveal that the electrolytes also promote reversible cycling of Li metal anodes with high Coulombic efficiency (CE) on both conventional planar substrates (1 mAh/cm2over 1,000 cycles with 99.1% CE; 3 mAh/cm2over 300 cycles with 99.2% CE) and unconventional, nonplanar/three-dimensional (3D) substrates (10 mAh/cm2over 100 cycles with 99.3% CE). Our finding that LiNO3promotes reversibility of Li metal electrodes in liquid DOL electrolytes by a physical mechanism provides a possible solution to a long-standing puzzle in the field about the versatility of LiNO3salt additives for enhancing reversibility of Li metal electrodes in essentially any aprotic liquid electrolyte solvent. As a first step toward understanding practical benefits of these findings, we create functional Li||lithium iron phosphate (LFP) batteries in which LFP cathodes with high capacity (5 to 10 mAh/cm2) are paired with thin (50 μm) lithium metal anodes, and investigate their galvanostatic electrochemical cycling behaviors.


Author(s):  
Mayank Garg ◽  
Tanvir R. Tanim ◽  
Christopher D. Rahn ◽  
Hanna Bryngelsson ◽  
Niklas Legnedahl

Abstract The temperature and capacity of individual cells affect the current distribution in a battery pack. Non uniform current distribution among parallel-connected cells can lead to capacity imbalance and premature aging. This paper develops models that calculate the current in parallel-connected cells and predict their capacity fade. The model is validated experimentally for a nonuniform battery pack at different temperatures. The paper also proposes and validates the hypothesis that temperature control can reduce capacity mismatch in parallel-connected cells. Three Lithium Iron Phosphate cells, two cells at higher initial capacity than the third cell, are connected in parallel. The pack is cycled for 1500 Hybrid Electric Vehicles cycles with the higher capacity cells regulated at 40°C and the lower capacity cell at 20°C. As predicted by the model, the higher capacity and temperature cells age faster, reducing the capacity mismatch by 48% over the 1500 cycles. A case study shows that cooling of low capacity cells can reduce capacity mismatch and extend pack life.


2010 ◽  
Vol 650 ◽  
pp. 142-149 ◽  
Author(s):  
Feng Wu ◽  
Hua Quan Lu ◽  
Yue Feng Su ◽  
Shi Chen ◽  
Yi Biao Guan

A simple strategy of pre-doping lithium ion into carbon negative electrode for lithium ion capacitor was introduced. In this strategy, a kind of Li-containing compound was added directly into the positive electrode of the lithium ion capacitor (LIC). When the lithium ion capacitor was charging first time, the Li-containing compound releases Li+, and the pre-doping of lithium ion into the negative electrode was performed. Here, we developed a lithium ion capacitor using Meso-carbon microbeads (MCMB)/activated carbon (AC) as the negative and positive electrode materials, respectively and use the lithium iron phosphate (LiFePO4) as the Li-containing compound, which supply the Li+ ions for pre-doping. The results demonstrated that, by adding 20 percent of LiFePO4 into the positive electrode, the efficiency of the capacitor increases from lower than 60% up to higher than 90%, and the capacitor shows good capacitance characteristics and high capacity.


2017 ◽  
Vol 24 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Yuan Ma ◽  
Dajun Liu

AbstractThe research on impurity in the lithium iron phosphate has been a hot topic. Especially when prepared by the solid state method, the impurities occurred easily through high-heat sintering. But some impurity is not completely bad for the cell performance, such as Fe2P. In this paper, the influence of Fe2P has been researched. Using the magnetic separation method, the high and low contents of Fe2P in lithium iron phosphate are obtained and then compared with the primary sample. Results show that the Fe2P phase helps to improve the rate and cycling performances, but a too high content will decrease the specific capacity of the sample due to the low content of active material. It is proven with the electrochemical measurement that the Fe2P phase could enhance the electrical conductivity of cathode, but it gives electrochemical inactivity. It can be concluded that the high rate or high capacity types LiFePO4 could be obtained by controlling the content of Fe2P through adjusting the preparation process.


Sign in / Sign up

Export Citation Format

Share Document