scholarly journals Determination of heat-mass transfer coefficients within the apparatuses with jet-film contact devices

2018 ◽  
Vol 194 ◽  
pp. 01013 ◽  
Author(s):  
Ilnur N. Madyshev ◽  
Oksana S. Dmitrieva ◽  
Andrey V. Dmitriev

One of the ways of intensifying the heat and mass transfer processes in gas-fluid systems is designing jet-film contact devices with a developed surface of phase contact at high flow velocities. A contact jet-film device has been developed. The results of numerical investigation of the operation of this device are presented. There were determined the coefficients of heat transfer to the air from the surface of liquid inside of the drain cup of contact device. The criterion equations of convective heat transfer for engineering calculations of jet-film contact devices is corrected.

1988 ◽  
Vol 41 (10) ◽  
pp. 365-370 ◽  
Author(s):  
William S. Janna

A survey of researchers and of manufacturers of spraying, drying, and spray heat transfer equipment was conducted. Those that responded provided descriptions of processes and devices that need developmental attention. Several of these problems are described here (eg, a unifying theory of how atomization takes place; a method of evaluating the performance of a spray used to dissolve air in water to enhance mass transfer processes; a comprehensive model for predicting heat transfer from high pressure sprays; etc). It is concluded that many research topics can be gleaned from industry as needs develop and innovative ways are found for sprays to replace conventional methods.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
David A. Aderibigbe

The paper reviews the present understanding of the analysis of the heat and mass transfer processes in single-slope solar stills. By using the results of published experiments, it is proposed that the heat and mass transfer phenomena from the basin water to the glass cover are coupled. This coupling makes it possible to derive the dependence of the heat transfer coefficient for condensation on the inclination of the glass cover of the still. The derived relation, i.e., Nucon = 0.738 (Grcon*Prcon*sin β/Ja*)¼ A−1 where A is the aspect ratio, has been demonstrated to be an important expression for predicting the heat transfer coefficient for condensation hcon necessary for a more realistic evaluation of the overall efficiency of single-slope solar still of a given cover angle β.


Author(s):  
Aleksey Bal'chugov

It is shown that randomization allows obtaining more reliable results in the experi mental study of hydrodynamic, heat transfer and mass transfer processes.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Wen Fu ◽  
Li Zhang ◽  
Xiaowei Li ◽  
Xinxin Wu

The heat and mass transfer processes of natural convective condensation with noncondensable gases are very important for the passive containment cooling system of water cooled reactors. Numerical simulation of natural convective condensation with noncondensable gases was realized in the Fluent software by adding condensation models. The scaled AP600 containment condensation experiment was simulated to verify the numerical method. It was shown that the developed method can predict natural convective condensation with noncondensable gases well. The velocity, species, and density fields in the scaled AP600 containment were presented. The heat transfer rate distribution and the influences of the mass fraction of air on heat transfer rate were also analyzed. It is found that the driving force of natural convective condensation with noncondensable gases is mainly caused by the mass fraction difference but not temperature difference. The natural convective condensation with noncondensable gases in AP1000 containment was then simulated. The temperature, species, velocity, and heat flux distributions were obtained and analyzed. The upper head of the containment contributes to 35.1% of the total heat transfer rate, while its area only takes 25.4% of the total condensation area of the containment. The influences of the mass fraction of low molecular weight noncondensable gas (hydrogen) on the natural convective condensation were also discussed based on the detailed species, density, and velocity fields. The results show that addition of hydrogen (production of zirconium-water reaction after severe accident) will weaken the intensity of natural convection and the heat and mass transfer processes significantly. When hydrogen contributes to 50% mole fraction of the noncondensable gases, the heat transfer coefficient will be reduced to 45%.


Author(s):  
Satish G. Kandlikar ◽  
Mark E. Steinke

Heat and mass transfer processes become highly efficient as the channel hydraulic diameter is reduced in size. Biological systems, such as human body, rely on the extremely efficient transport processes occurring at microscale in the functioning of its vital organs. In this paper, the transfer processes in lungs and kidneys will be reviewed. Although the flow in the microchannels present in these organs is laminar, it yields very high mass transfer coefficients due to the coupling of small channel diameters. Furthermore, the molecular transport mechanisms occurring across the membranes at nanoscales through diffusion controlled processes also become extremely important. Understanding these transport processes will enable us to develop more efficient artificial organs and processes that closely mimic the performance of the natural systems. These ideas can be extended to other microscale system designs in different technologies, such as IC cooling and MEMS micro fuel cells.


1990 ◽  
Vol 112 (3) ◽  
pp. 668-674 ◽  
Author(s):  
J. A. Rogers ◽  
M. Kaviany

During convective drying of initially fully saturated granular beds, the solid matrix is gradually exposed to the ambient air, resulting in heat transfer to both the liquid and solid. In an attempt to examine the heat and mass transfer processes occurring on the surface and to examine the influence of particle size and Bond number on the drying rate, experiments are performed in which granular beds constructed of spherical particles (which range from d = 0.2 mm to d = 25.4 mm) are convectively dried. For beds constructed of very small particles (d = 0.2 mm, Bo = 0.0035) the surface areas of the liquid and solid are difficult to estimate due to the random arrangement of the particles. The experimental results confirm existing knowledge that the evaporation rate is nearly constant during the funicular state of drying. For beds constructed of large particles (d = 25.4 mm, Bo = 21.7) an estimate of the surface areas of the liquid and solid reveals that the surface areas and the evaporation rate are highly dependent on surface saturation, contact angle, and surface tension. The results indicate that heat transfer from the solid to the liquid is significant and that the heat and mass transfer processes are not analogous.


Sign in / Sign up

Export Citation Format

Share Document