scholarly journals Characterization tools for shrinkage-compensating repair materials

2018 ◽  
Vol 199 ◽  
pp. 07002
Author(s):  
Benoît Bissonnette ◽  
Samy-Joseph Essalik ◽  
Charles Lamothe ◽  
Marc Jolin ◽  
Luc Courard ◽  
...  

Achievement of dimensional compatibility is one of the most important considerations in order to consistently achieve lasting repair works that do not undergo harmful cracking. Drying shrinkage of Portland cement concrete is generally inevitable and, although its magnitude can be reduced by optimizing or modifying the composition parameters, it remains significantly larger than its ultimate tensile strain. Conversely, the use of shrinkage-compensating concrete (ShCC) may allow to achieve a zero-dimensional balance with respect to drying shrinkage, through the use of a mineral expansive agent. The experimental work carried out in recent years at Laval University to evaluate the potential of shrinkage-compensating concretes (ShCC) for use as repair materials has in fact yielded quite promising results. Nevertheless, more research is required to turn ShCC systems into a truly dependable and versatile repair option. Among the issues still unresolved, suitable tests methods must be developed, not only to better characterize ShCC, but also to guide the specifications and perform field quality control. Efforts have thus been devoted to adapt or develop test procedures intended to better capture the particular volume change behavior of ShCC’s. The paper presents two test procedures intended to assess the shrinkage-compensating potential and the effective strain balance of ShCC in restrained conditions.

2016 ◽  
Vol 680 ◽  
pp. 392-397
Author(s):  
Zhu Ding ◽  
Meng Xi Dai ◽  
Can Lu ◽  
Ming Jie Zhang ◽  
Peng Cui

Magnesium phosphate cements (MPC) had been used as repair materials for deteriorated Portland cement concrete structures. In this paper a new MPC was prepared and the basic properties including workability and compressive strength were tested. The acid attack resistance of MPC was investigated by immersing the MPC mortars in solutions at pH 3, 5, and 7, for 14d, 28d and 60d respectively. The compressive strength of MPC mortars after acid attack was tested and the microstructure of MPC were examined. The results showed that the compressive strength of MPC decreased after immersion in acid solution for 14d and 28d, however the strength of MPC with suitable materials mixture can recovered again after 60d immersion. The results indicated MPC has high acid attack resistance in static acid solution. The behavior of MPC in flowing acid solutions is need to be studied further.


2015 ◽  
Vol 77 (32) ◽  
Author(s):  
David Yeoh ◽  
Koh Heng Boon ◽  
Norwati Jamaluddin

This research is an exploratory experiment into sulfur concrete used not as a complete replacement of cement but as an additional material in percentage of the cement content. The aim of this research was to explore the possible appreciation of mechanical and physical properties of concrete containing sulfur with percentages of 1%, 5% and 10% of the cement content. The sulfur used here was not heat-activated, hence the binding effect in sulfur was absent. The experimental results revealed that concrete containing sulfur did not perform better in their strength properties, both compressive strength and flexural strength. The physical properties such as water penetration and water absorption for concrete containing sulfur also showed poor performance in comparison to ordinary Portland cement concrete. Such phenomena are very likely due to the sulfur not being activated by heat. Carbonation test did not show good results as a longer term of testing is required. Drying shrinkage property was found to be encouraging in that concrete containing 10% sulfur had quite significant reduction in drying shrinkage as opposed to ordinary Portland cement concrete. 


2018 ◽  
Vol 196 ◽  
pp. 04018 ◽  
Author(s):  
Grigory Nesvetaev ◽  
Yulia Koryanova ◽  
Tatiana Zhilnikova

A model describing the variation in autogenous shrinkage and drying shrinkage of portland cement concrete, depending on the volume of aggregates and the shrinkage of hardened cement paste, is presented. The equation to calculate shrinkage of concrete as a function of the volume of aggregates and shrinkage of a hardened cement paste was proposed. Formulas are proposed that describe the change in the shrinkage of hardened cement paste as a function of water/cement. The results of studies of the effect of superplasticizers and mineral additives on the autogenous shrinkage and the drying shrinkage of hardened cement paste are presented. Concretes made with superplasticizer and mineral additive may have the potential lower the value of drying shrinkage. The shrinkage value can be lowered from 30% till 70%. Concretes containing superplasticizers and mineral additives can potentially have the autogenous shrinkage reduced to 75%, or increased to 180%.


Author(s):  
David W. Mokarem ◽  
Richard E. Weyers ◽  
D. Stephen Lane

During its service life, concrete experiences volume changes. One of the types of deformation experienced by concrete is shrinkage. There are four main types of shrinkage associated with concrete: plastic, autogenous, carbonation, and drying shrinkage. The volume changes in concrete from shrinkage can lead to the cracking of the concrete. In the case of reinforced concrete, cracks in the cover concrete provide a direct path for chloride ions to reach and corrode the reinforcing steel. The development of concrete drying-shrinkage performance specifications with an associated test procedure was assessed for concrete mixtures purchased by the Virginia Department of Transportation (VDOT). Five existing shrinkage-prediction models were also assessed to determine the accuracy and precision of each model as it pertains to the VDOT mixtures used in this study. The five models are the ACI 209 Code model, CEB90 Code model, Bazant B3 model, Gardner–Lockman model, and Sakata model. The percentage length change limits for the portland cement concrete mixtures were found to be 0.0300% at 28 days and 0.0400% at 90 days. The CEB90 Code model was judged as the best prediction model for the VDOT portland cement concrete mixtures.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 56
Author(s):  
Warid Wazien Ahmad Zailani ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Mohd Fadzil Arshad ◽  
Rafiza Abd Razak ◽  
Muhammad Faheem Mohd Tahir ◽  
...  

In recent years, research and development of geopolymers has gained significant interest in the fields of repairs and restoration. This paper investigates the application of a geopolymer as a repair material by implementation of high-calcium fly ash (FA) as a main precursor, activated by a sodium hydroxide and sodium silicate solution. Three methods of concrete substrate surface preparation were cast and patched: as-cast against ordinary Portland cement concrete (OPCC), with drilled holes, wire-brushed, and left as-cast against the OPCC grade 30. This study indicated that FA-based geopolymer repair materials (GRMs) possessed very high bonding strength at early stages and that the behavior was not affected significantly by high surface treatment roughness. In addition, the investigations using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy have revealed that the geopolymer repair material became chemically bonded to the OPC concrete substrate, due to the formation of a C–A–S–H gel. Fundamentally, the geopolymer network is composed of tetrahedral anions (SiO4)4− and (AlO4)5− sharing the oxygen, which requires positive ions such as Na+, K+, Li+, Ca2+, Na+, Ba2+, NH4+, and H3O+. The availability of calcium hydroxide (Ca(OH)2) at the surface of the OPCC substrate, which was rich in calcium ions (Ca2+), reacted with the geopolymer; this compensated the electron vacancies of the framework cavities at the bonding zone between the GRM and the OPCC substrate.


2018 ◽  
Vol 199 ◽  
pp. 07017
Author(s):  
Primesh Jassa ◽  
Hans Beushausen ◽  
Ines Tchetgnia Ngassam

One of the most common methods adopted in the rehabilitation of corrosion-damaged concrete is the patch repair procedure. However, in practice this method has shown to often be unreliable as a consequence of the widespread occurrence of shrinkage induced cracking and poor substrate-patch adhesion leading to debonding of the patch repair. From a practical point of view, such failed repair systems essentially restore the repaired concrete back to a deteriorated state. There is a common belief that repairing concrete with specialised proprietary repair materials would guarantee durability. However, the widespread premature failure of patch repairs conducted using such materials has proven the contrary. This paper presents an understanding of the materials and issues concerning the durability and serviceability of concrete patch repairs, with the aim of identifying alternative non-structural patch repair materials for the effective repair of corrosion-damaged concrete structures. The potential patch repair materials researched were polymer-cement concrete (copolymer of vinyl acetate and ethylene with 5% cement replacement) and 60%, 80% and 100% fly ash (FA) mortar. Patch repairs were conducted on substrate moulds to test application and observe cracking/debonding occurrence. Furthermore, compressive strength, durability index, accelerated drying shrinkage, restrained shrinkage, workability and scanning electron microscopy (SEM) tests were conducted to determine the properties of the materials developed with reference to performance requirements of durable concrete repairs. It was concluded that the 60% FA and polymer-cement concrete repair materials had the best overall performance. This research established that innovative alternative repair materials such as a 60% FA or polymer-cement concrete material, can be developed for non-structural patch repairs with improved long-term performance relative to conventional materials.


1997 ◽  
Vol 503 ◽  
Author(s):  
B. K. Diefenderfer ◽  
I. L. Al-Qadi ◽  
J. J. Yoho ◽  
S. M. Riad ◽  
A. Loulizi

ABSTRACTPortland cement concrete (PCC) structures deteriorate with age and need to be maintained or replaced. Early detection of deterioration in PCC (e.g., alkali-silica reaction, freeze/thaw damage, or chloride presence) can lead to significant reductions in maintenance costs. However, it is often too late to perform low-cost preventative maintenance by the time deterioration becomes evident. By developing techniques that would enable civil engineers to evaluate PCC structures and detect deterioration at early stages (without causing further damage), optimization of life-cycle costs of the constructed facility and minimization of disturbance to the facility users can be achieved.Nondestructive evaluation (NDE) methods are potentially one of the most useful techniques ever developed for assessing constructed facilities. They are noninvasive and can be performed rapidly. Portland cement concrete can be nondestructively evaluated by electrically characterizing its complex dielectric constant. The real part of the dielectric constant depicts the velocity of electromagnetic waves in PCC. The imaginary part, termed the “loss factor,” describes the conductivity of PCC and the attenuation of electromagnetic waves.Dielectric properties of PCC have been investigated in a laboratory setting using a parallel plate capacitor operating in the frequency range of 0.1 to 40.1MIHz. This capacitor set-up consists of two horizontal-parallel plates with an adjustable separation for insertion of a dielectric specimen (PCC). While useful in research, this approach is not practical for field implementation. A new capacitor probe has been developed which consists of two plates, located within the same horizontal plane, for placement upon the specimen to be tested. Preliminary results show that this technique is feasible and results are promising; further testing and evaluation is currently underway.


Sign in / Sign up

Export Citation Format

Share Document