Effect of Coarse Aggregate Sizes on Properties of Porous Concrete Paving Blocks

2014 ◽  
Vol 911 ◽  
pp. 433-437 ◽  
Author(s):  
A.H. Nur Hidayah ◽  
Md Nor Hasanan ◽  
P.J. Ramadhansyah

Properties of Porous Concrete Paving Blocks (PCPB) were investigated in this study. Two groups of coarse aggregate sizes were performed; passing 8 mm retains 5 mm and passing 10 mm retains 8 mm. For mixture design, 100 % of coarse aggregate were used. However, fine aggregate was eliminated in this investigation. The density, water absorption, flakiness index and elongation index test were performed to determine the properties of the coarse aggregate used in this study. Compression test and skid resistance test were used to evaluate the performance of PCPB. The results show that PCPB containing coarse aggregate size 5 8 mm give high compressive strength compared to others PCPB specimen. In addition, both PCPB specimens give an in increasing in skid resistance approximately 30 % compared to Concrete Paving Blocks (CPB).

2018 ◽  
Vol 203 ◽  
pp. 06001
Author(s):  
Muhammad Bilal Waris ◽  
Hussain Najwani ◽  
Khalifa Al-Jabri ◽  
Abdullah Al-Saidy

To manage tyre waste and conserve natural aggregate resource, this research investigates the use of waste tyre rubber as partial replacement of fine aggregates in non-structural concrete. The research used Taguchi method to study the influence of mix proportion, water-to-cement ratio and tyre rubber replacement percentage on concrete. Nine mixes were prepared with mix proportion of 1:2:4, 1:5:4 and 1:2.5:3; water-to-cement ratio of 0.25, 0.35 and 0.40 and rubber to fine aggregate replacement of 20%, 30% and 40%. Compressive strength and water absorption tests were carried out on 100 mm cubes. Compressive strength was directly proportional to the amount of coarse aggregate in the mix. Water-to-cement ratio increased the strength within the range used in the study. Strength was found to be more sensitive to the overall rubber content than the replacement ratio. Seven out of the nine mixes satisfied the minimum strength requirement for concrete blocks set by ASTM. Water absorption and density for all mixes satisfied the limits applicable for concrete blocks. The study indicates that mix proportions with fine to coarse aggregate ratio of less than 1.0 and w/c ratio around 0.40 can be used with tyre rubber replacements of up to 30 % to satisfy requirements for non-structural concrete.


2014 ◽  
Vol 554 ◽  
pp. 111-115 ◽  
Author(s):  
A.H. Nur Hidayah ◽  
Md. Nor Hasanan ◽  
P.J. Ramadhansyah

The objective of the study is to investigate the potential of using Porous Concrete Paving Blocks (PCPB) as a part of paving surface. Laboratory tests were conducted to compare and examine the effect of particle sizes of coarse aggregate. Two coarse aggregate sizes were selected; passing 8 mm retains 5 mm and passing 10 mm retains 8 mm. The fine aggregate was eliminated from mixes. The water to cement ratio used was 0.35. Compressive strength and skid resistance tests were performed to evaluate the properties of PCPB. The test results indicated that there was a reduction in the strength when coarse aggregate at different size was used. Scanning electron microscopy showed that voids, poor bonding and lack of adhesion at the boundaries of the aggregate with cement paste contributing to the low PCPB strength. However, both PCPB specimens provide 30 % to 40 % increase in skid resistance compared to Concrete Paving Blocks (CPB).


2015 ◽  
Vol 1113 ◽  
pp. 86-92 ◽  
Author(s):  
A.H. Nur Hidayah ◽  
Md Nor Hasanan ◽  
P.J. Ramadhansyah

This research studies the properties of Porous Concrete Paving Blocks (PCPB) with different sizes of coarse aggregate. Coarse aggregate (CA) is the main component in manufacturing PCPB. Three different sizes of coarse aggregate were used; 1) CA 5 – 10 mm as a control, 2) CA 5 – 8 mm and 3) CA 8 – 10 mm. Furthermore, a series of test were conducted such as density, compressive strength, porosity and skid resistance test to determine the properties of the blocks. It was found that the size of coarse aggregate affects the strength and porosity of the blocks. The strength was reduced approximately in the range 5 % to 17 % from the control blocks. However, it is vice versa with porosity result which porosity of the blocks increased in between 5 % to 10 %. This shows that the blocks suitable for use in vehicle area where help in reduce the water ponding on pavement surface and also increased the skid resistance between the vehicle tires and pavement.


2019 ◽  
Vol 276 ◽  
pp. 01027
Author(s):  
Hazairin ◽  
Erma Desmaliana ◽  
Bernardinus Herbudiman ◽  
Wira Yudha Saputra

Porous concrete is an innovation in sustainable concrete technology, which has high porosity concrete without fine aggregate. Porous concrete used in rain gardens, planter boxes, permeable pavements at urban open spaces could absorb rainwater so it can reduce run-off. This experimental study purposes to determine the compressive, split-tensile, flexural strengths, and permeability of porous concrete with various gradation of coarse aggregates. This study used a concrete mixture with coarse aggregate gradation variations of gap, continuous, and uniform on the water cement ratio of 0.4. The test specimens used three cylinders of 15x30cm for compressive and split-tensile strengths, except for uniform gradations used three cylinders of 10x20cm. Beam specimens of 15x15x60cm used for bending strength test by third point loading method. The tested mechanical properties are 7, 14, and 28 days-compressive strengths, 28 days split-tensile strength, and 28 days bending strength. The experimental results also show the average compressive strengths of porous concrete with variation of gradations of gap, continuous, and uniform for 28 days is 14.6 MPa, 13.0 MPa, and 10.6 MPa, respectively. Volumetric flow rate of porous concrete with gap, continuous, and uniform aggregate gradations is 28.4 ml/s, 32.1 ml/s, and 39.3 ml/s, respectively. The experimental results show that gap gradation is recommended due to its better compressive and flexural strengths. In porous concrete, aggregate gradations influence the air content. The highest air content results the lowest compressive strength of concrete. The designed air content should be controlled to maintain the expexted compressive strength of porous concrete.


2021 ◽  
Vol 11 (9) ◽  
pp. 3866
Author(s):  
Jun-Ryeol Park ◽  
Hye-Jin Lee ◽  
Keun-Hyeok Yang ◽  
Jung-Keun Kook ◽  
Sanghee Kim

This study aims to predict the compressive strength of concrete using a machine-learning algorithm with linear regression analysis and to evaluate its accuracy. The open-source software library TensorFlow was used to develop the machine-learning algorithm. In the machine-earning algorithm, a total of seven variables were set: water, cement, fly ash, blast furnace slag, sand, coarse aggregate, and coarse aggregate size. A total of 4297 concrete mixtures with measured compressive strengths were employed to train and testing the machine-learning algorithm. Of these, 70% were used for training, and 30% were utilized for verification. For verification, the research was conducted by classifying the mixtures into three cases: the case where the machine-learning algorithm was trained using all the data (Case-1), the case where the machine-learning algorithm was trained while maintaining the same number of training dataset for each strength range (Case-2), and the case where the machine-learning algorithm was trained after making the subcase of each strength range (Case-3). The results indicated that the error percentages of Case-1 and Case-2 did not differ significantly. The error percentage of Case-3 was far smaller than those of Case-1 and Case-2. Therefore, it was concluded that the range of training dataset of the concrete compressive strength is as important as the amount of training dataset for accurately predicting the concrete compressive strength using the machine-learning algorithm.


2017 ◽  
Vol 79 (7) ◽  
Author(s):  
Noorli Ismail ◽  
Norhafizah Salleh ◽  
Noor Faezah Mohd Yusof ◽  
Zalipah Jamellodin ◽  
Mohd Faizal Mohd Jaafar

This present study investigated the crushed ceramic waste utilisation as sand replacement in solid mortar bricks. The percentage of crushed ceramic waste used were 0% (CW0), 10% (CW10), 20% (CW20) and 30% (CW30) from the total weight of sand. The dimension prescribed of mortar bricks are 215 mm x 102.5 mm x 65 mm as followed accordance to MS 2281:2010 and BS EN 771-1:2011+A1:2015. Four (4) tests were conducted on mortar bricks namely crushing strength, water absorption, compressive strength of masonry units and thermal comfort. The incorporation of ceramic waste in all designated mortar bricks showed the increment of crushing strength between 23% and 46% at 28 days of curing and decrement water absorption between 34% and 44% was recorded corresponding to control mortar bricks. The prism test of masonry units consists of mortar bricks containing ceramic waste indicated the high increment of compressive strength at about 200% as compared to mortar brick without ceramic waste. The thermal comfort test of ceramic mortar bricks were also showed the good insulation with low interior temperature. Therefore, the ceramic waste can be utilised as a material replacement to fine aggregate in mortar brick productions due to significant outcomes performed. 


Author(s):  
Ademola Ayodeji Ajayi-Banji ◽  
D. A. Jenyo ◽  
Jubril Bello ◽  
M. A. Adegbile

Ceramic ware waste generation is becoming a global concern because of the increasing volume, hazardous nature, limited reusability, and poor waste management practices. This study examined the feasibility and efficacy of the inclusion of this waste as complementary aggregate in solid masonry unit production with bias interest on the compressive strength and water absorbability. Three particle sizes (1.4, 1.7, and 2.0 mm) of crushed ceramic ware waste were blended with natural fine aggregate under three different mix ratios (10, 20, and 30%) to produce the masonry units cured for 7, 14, 21, and 28 days prior to compressive tests analysis. Afterwards, some of the categories cured for 28-days were subjected to water absorption test. Morphology and elemental composition of the aggregates were also inspected using SEM-EDM machine. Also investigated were some of the aggregates’ physical properties. Results indicated that most of the waste-modified solid masonry units not only had water absorption capacity within required standard. The values were equally lower than the unmodified dense block (control) by 27 - 50%. Of the eighteen different categories produced, all M20T14, M20T21, and M30T28 modified dense masonry unit series with P1.7 (1.7 mm) and P2.0 (2.0 mm) particle sizes had high crushing force, compressive strength, and modulus range, which were 57 - 70 kN, 57 - 61 kN, 59 - 76 kN; 5.1 - 5.2 MPa, 5.1 - 5.5 MPa, 5.3 – 6.8 MPa; and 400 – 441 MPa, 411 – 419 MPa, 468 – 480 MPa respectively. Hence, modified masonry units with particle sizes P1.7 and P2.0 under the M20T14, M20T21, and M30T28 series are suitable masonry units for non-loading construction purposes. Interestingly, modified masonry unit (M30P2.0T7) cured under 7 days could also fit into this category. Hence, utilization of ceramic ware waste as co-aggregate in dense masonry units with M20 and M30 series production were established in this study for non-loading construction purposes


2020 ◽  
Vol 5 (2) ◽  
pp. 59-71
Author(s):  
Sri Devi Nilawardani

Title: The Effect of Using Mediteran Soil as Cement Substitution Materials in Compressive Strength and Tensile Strength of Concrete Concrete is a composite material (mixture) of cement, fine aggregate, coarse aggregate, and water. The potential of limestone in Indonesia is very large, reaching 28.678 billion tons which is the main ingredient in the cement manufacture. In the long run it will be depleted because it is a non-renewable natural resources. So to reduce the use of limestone the utilization of Mediteran soil as a substitution for some cement in the manufacture of concrete is required. The initial idea is based on the chemical composition contained in the Mediteran soil almost identical to the cement, which is carbonate (CaO) and silica (SiO2). The purpose of this research is to reveal the influence of substitution of Mediteran soil by 20% and 40% in the compressive strength and tensile of the concrete at age 3, 7, 14, and 28 days with the number of test specimen each 3 pieces on each variation in 10cm x20cm cylinder with planning of concrete mixture refers to SK SNI method T-15-1900-03. The type of research used is quantitative with the experimental method of laboratory test and data analysis of comparative method and regression. The results show that compressive strength and tensile strength of concrete using Mediteran soil substitution comparable to  the strength of normal concrete with dry treatment. In the composition of 20% Mediteran soils decreased by 51.35% or 7.9 MPa (compressive strength) and 30.60% or 0.93 MPa (tensile strength). While the composition of 40% Mediteran soil decreased by 43.78% or 9.13 MPa (compressive strength) and 2.24% or 1.31 MPa (tensile strength).  


Author(s):  
Adriane Pczieczek ◽  
Adilson Schackow ◽  
Carmeane Effting ◽  
Itamar Ribeiro Gomes ◽  
Talita Flores Dias

This study aims to evaluate the application of discarded tire rubber waste and Expanded Polystyrene (EPS) in mortar. For mortars fine aggregate was replaced by 10%, 20% and 30% of rubber and, 7.5% and 15% of EPS. We have verified the consistency, density, amount of air and water retentitivity in fresh state. The compressive strength, water absorption, voids ratio and specific gravity have been also tested in hardened state. The application of rubber powder contributed to the increase in entrained air content and in reducing specific gravity, as well as reducing compressive strength at 28 days. The addition of EPS also contributed to the increase of workability, water absorption and voids ratio, and decreased density and compressive strength when compared to the reference mortar. The use of rubber waste and EPS in mortar made the material more lightweight and workable. The mortars mixtures containing 10% rubber and 7.5% EPS showed better results.


Sign in / Sign up

Export Citation Format

Share Document