scholarly journals Measurements of rate constants of O2(b) quenching by CH4, NO, N2O at temperatures 300-800 K

2018 ◽  
Vol 209 ◽  
pp. 00006
Author(s):  
G.I. Tolstov ◽  
M.V. Zagidullin ◽  
N.A. Khvatov ◽  
I.A. Medvedkov ◽  
A.M. Mebel ◽  
...  

Electronically excited oxygen has an important place in the kinetic schemes of the processes taking place in the atmosphere, in the active medium of an oxygen-iodine laser, and in plasma-assisted combustion1. Over the past decades, a large amount of data on the rate constants of quenching O2(b) on a large number of collision partners has been accumulated. However, they mostly refer to the results of measurements at room temperature. In this paper, rate constants for the quenching of O2(b) by collisions with N2O, NO, and CH4 have been determined in the temperature range from 297 to 800 K, by the laser-induced fluorescence method. O2(b) was excited by pulses from a tunable dye laser, and the deactivation kinetics were followed via observing the temporal behavior of the b1Σg+→ X3Σg- fluorescence. From the analysis of experimental results, the following temperature dependencies of the quenching rate constants by these gases were obtained, and could be represented by the expressions: kNO=(1.77±0.2)×10-24×T3.5 exp(1138±37/T); kN2O=(2.63±0.14)×10-16×T1.5×exp(590±26/T) and kCH4=(3.54±0.4)×10-18×T1.5×exp(-220±24/T) cm3s-1. All of the rate constants measured at room temperature were found to be in good agreement with previously reported values.

2002 ◽  
Vol 67 (8) ◽  
pp. 1154-1164 ◽  
Author(s):  
Nachiappan Radha ◽  
Meenakshisundaram Swaminathan

The fluorescence quenching of 2-aminodiphenylamine (2ADPA), 4-aminodiphenylamine (4ADPA) and 4,4'-diaminodiphenylamine (DADPA) with tetrachloromethane, chloroform and dichloromethane have been studied in hexane, dioxane, acetonitrile and methanol as solvents. The quenching rate constants for the process have also been obtained by measuring the lifetimes of the fluorophores. The quenching was found to be dynamic in all cases. For 2ADPA and 4ADPA, the quenching rate constants of CCl4 and CHCl3 depend on the viscosity, whereas in the case of CH2Cl2, kq depends on polarity. The quenching rate constants for DADPA with CCl4 are viscosity-dependent but the quenching with CHCl3 and CH2Cl2 depends on the polarity of the solvents. From the results, the quenching mechanism is explained by the formation of a non-emissive complex involving a charge-transfer interaction between the electronically excited fluorophores and ground-state chloromethanes.


1978 ◽  
Vol 55 (1) ◽  
pp. 44-48 ◽  
Author(s):  
J.M. Brom ◽  
J.H. Kolts ◽  
D.W. Setser

Author(s):  
Walter Hack ◽  
R. Jordan

The rate constant of the depletion of OH radicals in the first electronically excited state with hydrogenperoxid:OH(was determined at room temperature under pseudo first-order conditions [OH(The rate constant is:similar to the quenching rate constant of OH(


2000 ◽  
Vol 104 (3) ◽  
pp. 539-551 ◽  
Author(s):  
Kevin B. Hewett ◽  
G. C. Manke ◽  
D. W. Setser ◽  
G. Brewood

1972 ◽  
Vol 50 (9) ◽  
pp. 1429-1432 ◽  
Author(s):  
A. J. Yarwood

Saturated hydrocarbons can quench the electronically excited singlet state of a simple ketone in the gas phase. Measurements on the quenching of the fluorescence yield of chloropentafluoroacetone at 23 °C show that different saturated hydrocarbons can deactivate the excited singlet state with varying efficiencies. The quenching rate constants are reported and possible relationships considered.


1989 ◽  
Vol 43 (8) ◽  
pp. 1406-1409 ◽  
Author(s):  
S. K. Nickle ◽  
L. A. Melton

The fluorescence lifetime of N,N,N′,N′-tetramethyl- p-phenyIenediamine (TMPD) in the vapor phase has been determined to be 3.2 ± 0.3 ns for excitation at 337 nm. The rate constants for quenching of electronically excited TMPD by ground-state TMPD, O2, and CO2 have been determined to be <1 × 10−10 cm3/s, (9.9 ± 1.0) × 10−10 cm3/s, and <4 × 10−13 cm3/s, respectively. The rate for TMPD implies that self-quenching is negligible up to pressures of at least 10 Torr. The quenching rate by oxygen is sufficiently high to ensure that use of TMPD as a quantitative marker for fuel evaporation in exciplex-based vapor/liquid visualization systems is probably not possible if significant quantities of oxygen—as would be the case in combustion environments—are present.


1971 ◽  
Vol 49 (11) ◽  
pp. 1808-1817 ◽  
Author(s):  
P. M. Scott ◽  
K. F. Preston ◽  
R. J. Andersen ◽  
L. M. Quick

An investigation has been made of the relative importance of the possible pathways [2a]–[2d][Formula: see text]for the reaction in the gas phase at room temperature between the excited oxygen atom O(1D2) and N2O, using the photolysis of NO2, O3, and N2O as sources of the excited atom. Measurement of the yields of N2 and NO from the photolysis at 2288 Å of mixtures of NO2 and N2O has led to a value of 1.01 ± 0.06 for k2a/k2b, the ratio of the rate constants for [2a] and [2b], in excellent agreement with the value of 0.99 ± 0.06 obtained from determination of the yields of N2 and NO2 arising from the flash photolysis of O3–N2O mixtures. The isotopic composition of the N2 produced in the photolysis of 15NO2–N2O mixtures indicated that k2c/k2a < 5 × 10 – 3. Furthermore, the value of k2a/(k2b + k2d) = 1.08 ± 0.19, obtained from a study of the effect of CO2 and Xe additions on the yield of N2 from the photolysis of N2O at 2288 Å, suggests that deactivation [2d] does not make an important contribution to the total rate constant for destruction of O(1D2).


Sign in / Sign up

Export Citation Format

Share Document