scholarly journals A new simple method for determining the sound absorption coefficient

2018 ◽  
Vol 211 ◽  
pp. 04003
Author(s):  
Merab Chelidze

Taking into account the influence of the length and diameter of the impedance tube on the process of decay of sound waves, a new study of sound propagation in an impedance tube is presented, on the basis of which it is easier to determine the sound absorption coefficient. The new simple method of determining the absorption coefficient, based on the decay of reverberating waves, is fairly stable and demonstrates a low sensitivity for all errors made in the measurement. The presented method makes it possible to measure the sound absorption coefficient without laboratories and precision measuring instruments in a wide range at the level of separate consumers.

2021 ◽  
Vol 263 (3) ◽  
pp. 3714-3719
Author(s):  
Takamasa Sato ◽  
Shuichi Sakamoto ◽  
Isami Nitta ◽  
Shunsuke Unai ◽  
Takunari Isobe ◽  
...  

In this study, we conducted theoretical analyses and experiments related to the acoustic characteristics of the situation where sound waves are incident upon the side surfaces of a group of cylinders forming a pin-holder structure. The sound-absorption coefficient, entering its clearance between cylinders through the geometrical dimension of the clearance or the physical property of gas, was calculated. In the analytical model, the gap part of the pin-holder structure was divided into elements and approximated as a gap surrounded by two parallel planes. The characteristic impedance and propagation constant of the approximate gap were obtained and treated as one-dimensional transfer matrices; the sound-absorption coefficient was then calculated using the transfer-matrix method. The calculated value was compared to that obtained in an experiment with a sample prepared using a 3D printer; the sound-absorption coefficient was measured using a 2-microphone impedance-measuring tube. We attempted to make a simple yet accurate estimation of sound-absorption coefficient using these procedures. Our theoretical values displayed a similar tendency to that obtained by experiment.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Xuezhi Zhu ◽  
Zhaobo Chen ◽  
Yinghou Jiao ◽  
Yanpeng Wang

In order to broaden the sound absorption bandwidth of a perforated panel in the low frequency range, a lightweight membrane-type resonator is installed in the back cavity of the perforated panel to combine into a compound sound absorber (CSA). Because of the great flexibility, the membrane-type resonator can be vibrated easily by the incident sound waves passing through the holes of the perforated panel. In the low frequency range, the membrane-type resonator and the perforated panel constitute a two degrees-of-freedom (DOF)-resonant type sound absorption system, which generates two sound absorption peaks. By tuning the parameters of the membrane type resonator, a wide frequency band having a large sound absorption coefficient can be obtained. In this paper, the sound absorption coefficient of CSA is derived analytically by combining the vibration equation of the membrane-type resonator with the acoustic impedance equation of the perforated panel. The influences of the parameters of the membrane-type resonator on the sound absorption performance of the CSA are numerically analyzed. Finally, the wide band sound absorption capacity of the CSA is validated by the experimental test.


2009 ◽  
Vol 1188 ◽  
Author(s):  
Miao Lu ◽  
Carl Hopkins ◽  
Yuyuan Zhao ◽  
Gary Seiffert

AbstractThis paper investigates the sound absorption characteristics of porous steel samples manufactured by Lost Carbonate Sintering. Measurements of the normal incidence sound absorption coefficient were made using an impedance tube for single-layer porous steel discs and assemblies comprising four layers of porous steel discs. The sound absorption coefficient was found not to vary significantly with pore size in the range of 250-1500 μm. In general, the absorption coefficient increases with increasing frequency and increasing thickness, and peaks at specific frequencies depending on the porosity. An increase in porosity tends to increase the frequency at which the sound absorption coefficient reaches this peak. An advantage was found in using an assembly of samples with gradient porosities of 75%-70%-65%-60% as it gave higher and more uniform sound absorption coefficients than an assembly with porosities of 75%.


2020 ◽  
Vol 305 ◽  
pp. 43-48
Author(s):  
Un Hwan Park ◽  
Jun Hyeok Heo ◽  
In Sung Lee ◽  
Dae Kyu Park

Automotive interior material with consists of several material layers has the sound-absorbing function. It is difficult to predict sound absorbing coefficient because of several material layers. So, many experimental tuning is required to achieve the target of sound absorption. Therefore, while the car interior materials are developed, a lot of time and money is spent. In this study, we present the method to predict the sound absorbing performance of the material with multi-layer using physical properties of each material. The properties are predicted by foam-X software using sound absorption coefficient data measured by impedance tube. And we will compare and analyze the predicted sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If the method is used instead of experimental tuning in the development of car interior material, the time and money can be saved. And then, the development effort can be is reduced because it can be optimized by simulation.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 725
Author(s):  
Vitor Hugo Carneiro ◽  
Hélder Puga ◽  
José Meireles

Aluminum-based cellular solids are promising lightweight structural materials considering their high specific strength and vibration damping, being potential candidates for future railway vehicles with enhanced riding comfort and low fuel consumption. The filling of these lattices with polymer-based (i.e., polyurethane) foams may further improve the overall vibration/noise-damping without significantly increasing their density. This study explores the dynamic (i.e., frequency response) and acoustic properties of unfilled and polyurethane-filled aluminum cellular solids to characterize their behavior and explore their benefits in terms of vibration and noise-damping. It is shown that polyurethane filling can increase the vibration damping and transmission loss, especially if the infiltration process uses flexible foams. Considering sound reflection, however, it is shown that polyurethane filled samples (0.27–0.30 at 300 Hz) tend to display lower values of sound absorption coefficient relatively to unfilled samples (0.75 at 600 Hz), is this attributed to a reduction in overall porosity, tortuosity and flow resistivity. Foam-filled samples (43–44 dB at 700–1200 Hz) were shown to be more suitable to reduce sound transmission rather than reflection than unfilled samples (21 dB at 700 Hz). It was shown that the morphology of these cellular solids might be optimized depending on the desired application: (i) unfilled aluminum cellular solids are appropriate to mitigate internal noises due to their high sound absorption coefficient; and (ii) PU filled cellular solids are appropriate to prevent exterior noises and vibration damping due to their high transmission loss in a wide range of frequencies and vibration damping.


An acoustic property of textile material can be measured using an impedance tube, is the most popular technique to measure normal sound absorption and transmission loss. This method consuming less time and a very small sample is required to assess the acoustic properties of the materials. Unfortunately, the cost of the impedance tube and software used for measurement is very high. This paper gives information about how to develop a cost-effective impedance tube suitable for researchers. The design, development, and fabrication of the impedance tube suitable for different frequencies with technical details are present here. Information related to some software which can be used to measure sound absorption coefficient also provided. To validate the testing results obtained from custom-build impedance tube, same samples were tested on commercially available impedance tube at PSG College, Coimbatore. It was observed that both the instruments provide almost same results, no statistically significant difference found in results. Base on the results design of customized impedance tube recommends to student and researcher interested in measuring acoustic properties of textile material


Sign in / Sign up

Export Citation Format

Share Document