scholarly journals Parametric Performance of Ultra-light Gas Turbine Power Plant for Heavy Lift Multicopters Flight Systems Using Astra - Russian Aviation Engine Optimization Software

2018 ◽  
Vol 220 ◽  
pp. 03011
Author(s):  
T. Aurthur Vimalachandran ◽  
Andrey Yurievich Tkachenko ◽  
Viktor Nikolaevich Rybakov

A detailed parametric analysis was performed on entire performance cycle model of micro gas turbine power plant. The parametric analysis was studied using Russian Software named ASTRA. Evaluation of parameters on both design and operation condition was performed. The parameters focused here are power output, compression work, specific fuel consumption and thermal efficiency. Various stages such as use of Intercooler, Pre-heater and their optimal influence on thermodynamics were performed. The task was to optimize the maximum output in free turbine power by simulating various cycles of compressor pressure ratios for centrifugal compressor, ambient temperature in various altitude; air-fuel mix ratio and turbine inlet temperature. The results are analysed and presented in this article, the Analysis known as on-design analysis. The compressor uses 66% of turbine work output. The research analysis focuses on reducing the use of power output by compressor and maximizes the power output by free turbine. The results could be summarized as increase in gas turbine thermal efficiency does not always improve the gas turbine efficiency. Optimum power increase of up to 3% was improved and improvement in fuel efficiency improved about 4%.

2011 ◽  
Vol 189-193 ◽  
pp. 3007-3013 ◽  
Author(s):  
M.M. Rahman ◽  
Thamir K. Ibrahim ◽  
K. Kadirgama ◽  
R. Mamat ◽  
Rosli A. Bakar

This paper presents the effect of ambient temperature and operation conditions (compression ratio, turbine inlet temperature, air to fuel ratio and efficiency of compressor and turbine) on the performance of gas turbine power plant. The computational model was developed utilizing the MATLAB codes. Turbine work found to be decreases as ambient temperature increases as well as the thermal efficiency decreases. It can be seen that the thermal efficiency increases linearly with increases of compression ratio while decreases of ambient temperature. The specific fuel consumption increases with increases of ambient temperature and lower turbine inlet temperature. The effect of variation of SFC is more significance at higher ambient temperature than lower temperature. It is observed that the thermal efficiency linearly increases at lower compressor ratio as well as higher turbine inlet temperature until certain value of compression ratio. The variation of thermal efficiency is more significance at higher compression ratio and lower turbine inlet temperature. Even though at lower turbine inlet temperature is decrement the thermal efficiency dramatically and the SFC decreases linearly with increases of compression ratio and turbine inlet temperature at lower range until certain value then increases dramatically for lower turbine inlet temperature.


2015 ◽  
Vol 76 (5) ◽  
Author(s):  
Alhassan Salami Tijani ◽  
Mohd Rashid Halim

The purpose of this paper is to study the performance of an existing open cycle gas turbine power plant at Putrajaya power station. At compressor inlet temperature of 298.90K, thermal efficiency of 31 % was observed for the existing or current cycle whiles the modified configuration yielded thermal efficiency of 45 %, this result in 14 % increase in thermal efficiency. At pressure ratio of 3.67, thermal efficiency of about 31.06% and 44% was recorded for the current cycle and regenerative cycle respectively. The efficiency of both cycles increase considerably with increase in pressure ratio, but at pressure ratio of about 7, only a small increase in efficiency for both cycles was observed. The optimum value of the efficiencies for both cycles that correspond to pressure ratio of 7 is 43.06 and 56% for the current cycle and the regenerative cycle respectively.


Author(s):  
Saeed Farokhi

In a modern gas turbine power plant, the axial exhaust diffuser accounts for up to 10% of the generator power. An unshrouded rotor, due to its highly energetic tip clearance flow, improves the pressure recovery characteristic of the exhaust diffuser, while the power production within the blading suffers a loss as a result of the tip leakage flow. In this paper, these conflicting trends are thermodynamically investigated and nondimensional expressions are derived which facilitate the task of a gas turbine system designer. Conservatively, 1% thermal efficiency gain results from elimination of the last rotor tip clearance flow. The corresponding increase in thermal efficiency of a modern gas turbine power plant due to enhanced diffuser pressure recovery is less than one percent.


2022 ◽  
Vol 2163 (1) ◽  
pp. 012004
Author(s):  
F Moreno-Gamboa ◽  
J C Acevedo-Paez ◽  
D Sanin-Villa

Abstract A thermodynamic model is presented for evaluation of a solar hybrid gas-turbine power plant. The model uses variable ambient temperature and estimates direct solar radiation at different day times. The plant is evaluated in Barranquilla, Colombia, with a solar concentration system and a combustion chamber that burns natural gas. The hybrid system enables to maintain almost constant the power output throughout day. The model allows optimizing the different plant parameters and evaluating maximum performance point. This work presents pressure ratio ranges where the maximum values of overall efficiency, power output, thermal engine efficiency and fuel conversion rate are found. The study is based on the environmental conditions of Barranquilla, Colombia. The results obtained shows that optimum pressure ratio range for power output and overall efficiency is between 6.4 and 8.3, when direct solar radiation its maximum at noon. This thermodynamic analysis is necessary to design new generations of solar thermal power plants.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Thamir K. Ibrahim ◽  
M. M. Rahman

The performance enhancements and modeling of the gas turbine (GT), together with the combined cycle gas turbine (CCGT) power plant, are described in this study. The thermal analysis has proposed intercooler–reheated-GT (IHGT) configuration of the CCGT system, as well as the development of a simulation code and integrated model for exploiting the CCGT power plants performance, using the matlab code. The validation of a heavy-duty CCGT power plants performance is done through real power plants, namely, MARAFIQ CCGT plants in Saudi Arabia with satisfactory results. The results from this simulation show that the higher thermal efficiency of 56% MW, while high power output of 1640 MW, occurred in IHGT combined cycle plants (IHGTCC), having an optimal turbine inlet temperature about 1900 K. Furthermore, the CCGT system proposed in the study has improved power output by 94%. The results of optimization show that the IHGTCC has optimum power of 1860 MW and thermal efficiency of 59%. Therefore, the ambient temperatures and operation conditions of the CCGT strongly affect their performance. The optimum level of power and efficiency is seen at high turbine inlet temperatures and isentropic turbine efficiency. Thus, it can be understood that the models developed in this study are useful tools for estimating the CCGT power plant's performance.


Author(s):  
Hussain Al-Madani ◽  
Teoman Ayhan ◽  
Omar Al-Abbasi

The present study deals with the thermodynamically modelled two-shaft gas turbine system consisting of a cooling unit at the compressor inlet. The system is used to investigate the generated power, thermal efficiency and second law efficiency. The parametric study using this model shows effect of ambient conditions, compressor inlet temperature, and pressure ratios on power output, thermal efficiency and second law efficiency. Theoretical results using the proposed model show that when the compressor inlet temperature is decreased by some kind of cooling systems, the net power output and thermal efficiency increases up to 30% and 23%, respectively. Also, the second law efficiency of the proposed system increases in compression to the specified reference state. It shows that the proposed model is thermodynamically viable. A comparison of the performance test results of the model and the experimental results are in good agreement. The results provide valuable information regarding the gas turbine system and will be useful for designers.


Author(s):  
Hironori Arakawa ◽  
Takayuki Suzuki ◽  
Kazufumi Saito ◽  
Shigeru Tamura ◽  
Shinsuke Kishi

The ceramic gas turbine (CGT) engine can achieve higher thermal efficiency, lower pollutant emissions, and has a wider fuel tolerance compared to conventional gasoline and diesel engines. Accordingly, research and development of a 300kW class ceramic gas turbine has been performed in Japan as a national project since FY 1988, under the Agency of Industrial Science and Technology (AIST), which is an agency of the Ministry of International Trade and Industry (MITI). The final target of the project is to achieve 42% thermal efficiency at a Turbine Inlet Temperature (TIT) of 1350°C. At present, two different types of ceramic gas turbines (CGT 301 and CGT 302) are under development and operating tests of prototype engines are being carried out. The CGT 301 features removable ceramic blades joined to a metal rotor disk. This 37 blade hybrid rotor of the high pressure stage was hot spin tested at a TIT of 1350°C and the burst of the blades did not occur at the rated speed. A thermal efficiency of 26.4% was achieved at a TIT 1200°C during the first year of prototype operation. Improvement in component parts is ongoing and as a result, improvements in thermal efficiency are forthcoming. The CGT 302 features a lean premixed low-NOx combustor having a primary diffusion burner, a set of main pre-mixed burners, single fuel injector, and air bypass to control combustion. This combustor showed a lower pressure loss and NOx emissions of 5ppm (O2 = 16%), which is less than the allowable value of 70ppm. Recent operating tests of this engine showed a maximum output power and thermal efficiency of 228kW and 36%, respectively, as of November 1996. For both the CGT 301 and CGT 302, more focused research on CGT materials and components, as well as operating tests at 1350°C TIT, are being carried out in order to reach the final target values.


Author(s):  
Ibrahim Sinan Akmandor ◽  
O¨zhan O¨ksu¨z ◽  
Sec¸kin Go¨kaltun ◽  
Melih Han Bilgin

A new methodology is developed to find the optimal steam injection levels in simple and combined cycle gas turbine power plants. When steam injection process is being applied to simple cycle gas turbines, it is shown to offer many benefits, including increased power output and efficiency as well as reduced exhaust emissions. For combined cycle power plants, steam injection in the gas turbine, significantly decreases the amount of flow and energy through the steam turbine and the overall power output of the combined cycle is decreased. This study focuses on finding the maximum power output and efficiency of steam injected simple and combined cycle gas turbines. For that purpose, the thermodynamic cycle analysis and a genetic algorithm are linked within an automated design loop. The multi-parameter objective function is either based on the power output or on the overall thermal efficiency. NOx levels have also been taken into account in a third objective function denoted as steam injection effectiveness. The calculations are done for a wide range of parameters such as compressor pressure ratio, turbine inlet temperature, air and steam mass flow rates. Firstly, 6 widely used simple and combined cycle power plants performance are used as test cases for thermodynamic cycle validation. Secondly, gas turbine main parameters are modified to yield the maximum generator power and thermal efficiency. Finally, the effects of uniform crossover, creep mutation, different random number seeds, population size and the number of children per pair of parents on the performance of the genetic algorithm are studied. Parametric analyses show that application of high turbine inlet temperature, high air mass flow rate and no steam injection lead to high power and high combined cycle thermal efficiency. On the contrary, when NOx reduction is desired, steam injection is necessary. For simple cycle, almost full amount of steam injection is required to increase power and efficiency as well as to reduce NOx. Moreover, it is found that the compressor pressure ratio for high power output is significantly lower than the compressor pressure ratio that drives the high thermal efficiency.


Sign in / Sign up

Export Citation Format

Share Document