scholarly journals Thermal and Fluid Dynamic Analysis of Compact Fin-and-Tube Heat Exchangers for Automotive Applications

2018 ◽  
Vol 225 ◽  
pp. 05019
Author(s):  
A.Y. Adam ◽  
A.N. Oumer ◽  
Azri Alias ◽  
M. Ishak ◽  
R. Mamat ◽  
...  

Flat tubes heat exchangers are commonly used in many industrial applications as a consequence of the distinctive geometrical characteristics of the flat tube compared with round tube. This paper aims to investigate the flow and heat transfer characteristics of laminar cross-flow forced convection in compact fin-and-flat tube heat exchangers. The experiment was performed to explore the influence of the tube inclination angle on the thermal hydraulic performance of the flat tube heat exchanger. Four flat tubes arranged in two aligned rows having the same longitudinal and transverse pitches have been examined in the range of Reynolds number between 1768.27 and 2259.46. A constant heat flux of 4169.63 W/m2 was applied at the inner surface of each flat tube. On the other hand, the numerical simulation is solved by ANSYS FLUENT for a two dimensional model with unstructured mesh and the results are compared against the experimental results. The numerical simulation results indicate that the average Nusselt number increased by 78.24 % for Reynolds number 1768.27. Besides that, for Reynolds number 1964.75 and 2259.46 the Nusselt numbers were increased by 75.89 % and 54.49%, respectively, compared to experimental results. Moreover, the pressure drop is increased 25 % and 83.38 % for both experimental and numerical simulation with respect to three Reynolds number. It was found that, the tube with 30° degree provides the higher heat transfer with Reynolds number 2259.46. This study could assist engineers in decisions regarding the application of compact fin-and-tube heat exchangers in the automotive field.

Author(s):  
Josua P. Meyer ◽  
Leon Liebenberg ◽  
Jonathan A. Olivier

Heat exchangers are usually designed in such a way that they do not operate in the transition region. This is usually due to a lack of information in this region. However, due to design constraints, energy efficiency requirements or change of operating conditions, heat exchangers are often forced to operate in this region. It is also well known that entrance disturbances influence where transition occurs. The purpose of this paper is to present experimental heat transfer and pressure drop data in the transition region for fully developed and developing flows inside smooth tubes using water as the working fluid. The use of different inlet disturbances were used to investigate its effect on transition. A tube-in-tube heat exchanger was used to perform the experiments, which ranged in Reynolds numbers from 1 000 to 20 000, with Prandtl numbers being between 4 and 6 while Grashof numbers were in the order of 105. Results showed that the type of inlet disturbance could delay transition to a Reynolds number as high as 7 000, while other inlets expedited it, confirming results of others. For heat transfer, though, it was found that transition was independent of the inlet disturbance and all commenced at the same Reynolds number, 2 000–3 000, which was attributed to secondary flow effects.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Feng-Cai Zheng ◽  
Song Liu ◽  
Zhi-Min Lin ◽  
Jaafar Nugud ◽  
Liang-Chen Wang ◽  
...  

Air-side heat transfer and flow friction characteristics of four different fin patterns suitable for flat tube bank fin heat exchangers are investigated experimentally. The fin patterns are the fin with six dimples, the fin with nine dimples, the double louvered fin, and the fin with delta-winglet vortex generators (VGs). The corresponding plain fins (plain fin I and plain fin II) are used as the references for evaluating the thermal performances of these fin patterns under identical pump power constraint. The performance of the fin with the six dimples is better than that with nine dimples. The performance of the fin with delta-winglet VGs is better than that of the double louvered fin, and the performance of the latter is better than that of the fins with six or nine dimples. In the tested Reynolds number range, the heat transfer enhancement performance factor of the fin with six dimples, the fin with nine dimples, the double louvered fin, and the fin with delta-winglet VGs is 1.2–1.3, 1.1–1.2, 1.3–1.6, and 1.4–1.6, respectively. The correlations of Nusselt number and friction factor with Reynolds number for the fins with six/nine dimples and the double louvered fin are obtained. These correlations are useful to design flat tube bank fin heat exchangers.


2013 ◽  
Vol 423-426 ◽  
pp. 1910-1913
Author(s):  
Jian Rong Du ◽  
Zu Yi Zheng ◽  
Jun Hua Wan ◽  
Yi De Wang ◽  
Zhong Min Wan ◽  
...  

Three heat exchangers, all of which have 38 tubes in total and 6 passes, with different tube arrangements were simulation investigated in laboratory. The effect of flat tube distribution on heat transfer performance and pressure drop characteristic was simulation investigated. The effect of different air velocity and flow on heat transfer performance and pressure drop characteristic was simulation investigated too. The results show that similar tube distribution has little effect on heat transfer but has great effect on pressure drop. It was found the tube arrangement from first pass to sixth pass is 10,9,6,5,4,4 has the best heat transfer performance and its pressure drop is small. The heat transfer and pressure drop increase with the air velocity and refrigerant flow.


2014 ◽  
Vol 701-702 ◽  
pp. 1233-1236
Author(s):  
Lv Xian Zeng ◽  
Zu Yi Zheng ◽  
Jun Hua Wan ◽  
Xi Chen ◽  
Zhong Min Wan ◽  
...  

Three heat exchangers, all of which have 38 tubes in total and 6 passes, with different tube arrangements were manufactured to be experimental investigated in laboratory. The effect of flat tube distribution on heat transfer performance and pressure drop characteristic was experimental investigated. The effect of different air velocity and flow on heat transfer performance and pressure drop characteristic was also experimental investigated. The results show that similar tube distribution has little effect on heat transfer quality but has great effect on pressure drop. It was found the third arrangement has the best heat transfer and its pressure drop is small. Thus the third arrangement is the best solution. The heat transfer and pressure drop increase with the air velocity and refrigerant flow, so a proper value should be chosen, it was found that the simulation results were mainly agreement with the experimental results.


Author(s):  
Tung X. Vu ◽  
Lokanath Mohanta ◽  
Vijay K. Dhir

In this work, we focus exclusively on heat transfer enhancement techniques for the air-side heat transfer in air-cooled heat exchangers/condensers. An innovative dimpled fin configuration is explored. Experiments, in which both heat transfer and drag are measured, are conducted with flat tubes in three configurations: without fins, with plain fins and with dimpled fins. Reynolds numbers based on the hydraulic diameter of the finned passages are varied between 600 and 7000. Results indicate that fins are more advantageous at lower Reynolds numbers since the increase in drag at higher Reynolds numbers quickly erases any advantage due to an increase in heat transfer rate. As an example, for the plain fins versus a bare tube at a Reynolds number of 600, there is a 7 fold increase in heat transfer with only a 5 fold increase in drag. However, at a Reynolds number of 7000, both heat transfer and drag increase by approximately 6 times, indicating that the increase in drag has caught up with the heat transfer enhancement. Similarly, while dimpled fins do result in higher heat transfer compared with the plain fins, the advantage is also more prominent at lower Reynolds numbers where heat transfer enhancement is higher than the associated increase in pumping power.


2020 ◽  
Vol 6 (11) ◽  
pp. 14-20
Author(s):  
Rohit Kumar Gaur ◽  
Dr. Shashi Kumar Jain ◽  
Dr. Sukul Lomash

A heat exchanger is a device used to transfer thermal energy between two or more liquids, between a solid surface and a liquid, or between solid particles and a liquid at different temperatures and in thermal contact where shell and tube heat exchangers contain a large number of tubes packed in a jacket whose axes are parallel to those of the shell. Heat transfer occurs when one fluid flows into the pipes while the other flows out of the pipes through the jacket. In industry, three-tube heat exchanger tubes are used as condensers, evaporators, sub cooler, heat recovery heat exchangers, etc. The three concentric tube heat exchanger is a constructively modified version of the double concentric tube heat exchanger as an intermediate tube adds some advantages over the double tube heat exchangers in that it is larger tube surface area heat transfer per unit of length.  In the present study, the triple tube heat exchanger is further modified by inserting helical baffle over the surface of one of the tubes and observed turbulence flow which may lead to high heat transfer rates between the fluids of heat exchanger. Further, the Reynolds number, Nusselt number, friction factor of the flow at different mass flow rates of the hot fluid while keeping a constant mass flow rate of cold and normal temperature fluids were calculated. It was found that as the mass flow rate of the fluid increases the Reynolds number increases, the turbulence in the flow will increase which will cause the intermixing of the fluid, higher the rate of intermixing, more will be the heat transfer of the system.  


2010 ◽  
Vol 15 (5) ◽  
pp. 427-432 ◽  
Author(s):  
Xia Yang ◽  
Jie Zhang ◽  
Jiuyang Yu ◽  
Yanyang Wu ◽  
Yan Luo ◽  
...  

Author(s):  
Jiuyang Yu ◽  
Wenwu Xia ◽  
Xingkui Feng

A three dimensional numerical simulation study has been carried out to predict air flow and temperature distribution in flat-tube heat exchangers. Due to the symmetry in geometrical construction, a section of heat exchanger has been considered for CFD analysis by using PHOENICS software. The k-ε turbulence model has been used to solve the transport equations for turbulent flow energy and the dissipation rate. In order to check the validity of the computational modeling, the results were compared with the measured flow parameters such as pressure and velocity distribution. It is found that both the heat transfer coefficient and the pressure drop for the shell-side are in good arrangement with experimental results. Comparing with circular-tube heat exchangers, the simulation result shows that the pressure drop of flat-tube heat exchangers decreases 12%∼20%, and the coefficient of integral performance Nu/ζ0.29 has an increment, which is between 22%∼34%.


2014 ◽  
Vol 18 (3) ◽  
pp. 863-874 ◽  
Author(s):  
Xueping Du ◽  
Yantao Yin ◽  
Min Zeng ◽  
Pengqing Yu ◽  
Qiuwang Wang ◽  
...  

A tremendous quantity of water can be saved if the air cooling system is used, comparing with the ordinary water-cooling technology. In this study, two kinds of finned tube heat exchangers in an indirect air-cooling tower are experimentally studied, which are a plain finned oval-tube heat exchanger and a wavy-finned flat-tube heat exchanger in a cross flow of air. Four different air inlet angles (90?, 60 ?, 45?, and 30?) are tested separately to obtain the heat transfer and resistance performance. Then the air-side experimental correlations of the Nusselt number and friction factor are acquired. The comprehensive heat transfer performances for two finned tube heat exchangers under four air inlet angles are compared. For the plain finned oval-tube heat exchanger, the vertical angle (90?) has the worst performance while 45? and 30? has the best performance at small ReDc and at large ReDc, respectively. For the wavy-finned flat-tube heat exchanger, the worst performance occurred at 60?, while the best performance occurred at 45? and 90? at small ReDc and at large ReDc, respectively. From the comparative results, it can be found that the air inlet angle has completely different effects on the comprehensive heat transfer performance for the heat exchangers with different structures.


Author(s):  
A. Halbritter ◽  
U. Schygulla ◽  
A. Wenka ◽  
K. Schubert

At the Institute for Micro Process Engineering of the Forschungszentrum Karlsruhe, micro heat exchangers are manufactured out of single foils of base metal alloys. The characterisation of the thermohydraulic properties of microchannel heat exchangers is done using water as heat transfer medium on both passages at temperatures of 10°C and 95°C. The present publication will give an overview of the numerical simulation as well as experimental results for crossflow and counterflow microchannel heat exchangers. A comparison of three crossflow heat exchangers with different microchannel structures, and two different types of counterflow microchannel heat exchangers is shown. For comparison, the heat transfer rate, the overall heat transfer coefficients and efficiencies as well as pressure drop obtained from experiment and theory is shown. For numerical simulation, two models have been used. An easily accessibly method is to use classical engineering codes based on the Nusselt theory (VDI Wa¨rmeatlas, 1994). A more detailed model is to use computational fluid dynamics (CFD) with the commercially available tool FLUENT ®, where best estimation codes have been applied for numerical simulation. Both numerical calculations are a helpful complement to predict thermal and hydrodynamic behaviour of the microchannel heat exchangers.


Sign in / Sign up

Export Citation Format

Share Document