scholarly journals Evaluation of Potential Sites for Harnessing Tidal Energy around Coastal Area of Malaysia

2018 ◽  
Vol 225 ◽  
pp. 06015
Author(s):  
Nazani Nazri ◽  
Shahrani Anuar ◽  
Firdaus Basrawi ◽  
Ahmmad Shukrie ◽  
Siti Aishah

This paper present the potential sites around coastal area of Malaysia for electricity generation by harnessing tidal energy. As the electricity demand increase over the year and generating electricity by using fossil fuel caused the increase number in CO2 emission, thus renewable energy become one of the solution for alternating energy for electricity. There are a few of identified locations along Malaysia’s coastal area that have potential for tidal energy implementation. The approaching for harnessing tidal energy are by using tidal barrage approach which are consist three types of mode generation ebb-mode, flood-mode and double-mode. The output generations are calculated by identify the size of basin at identified locations. For suitable location identification is by using geographical map and bathymetry map. At the end, the identified location that suitable for harnessing tidal energy are Pulau Langkawi, Pulau Pinang, Lumut, Miri, Kota Kinabalu, Kudat, Lahad Datu, Tawau and Labuan.

2020 ◽  
Vol 190 ◽  
pp. 00007
Author(s):  
Dhirajsing Rughoo

The challenges to integrating a greater share of renewable energy, more specifically solar energy into the power grid in tropical islands are that these islands have a complex microclimate, high humidity and high cloud coverage. Because of this, the power output from solar photovoltaic (SPV) plants is severely affected. In this manuscript, the results of a study carried out on the performance of a 15.2 MW solar photovoltaic (SPV) plant in the island nation Mauritius is presented. The net annual yield was 22 162 MWh and has avoided 22 162 metric t of CO2 emission into the atmosphere. An attempt is also made to develop a model to forecast the power that can be generated from the SPV plants at that location. The grid operator, the national Central Electricity Board (CEB) needs to know a priori, the energy mix for the subsequent few days so that the level of operation of fossil fuel fired thermal plants can be tuned accordingly to minimize the environment pollution of this pristine island.


2021 ◽  
Vol 73 (08) ◽  
pp. 8-8
Author(s):  
Pam Boschee

Forecasts for oil demand are looking up, according to OPEC and the International Energy Agency as of mid-July. Will the optimistic views prove to be on target? We have learned how the market can shift or wildly careen, both historically and in the very recent past. Looking at the forecasts, which reflect a consensus of sorts, is encouraging for producers. OPEC’s monthly report of 15 July projected global oil demand to reach nearly 100 million B/D next year, a level similar to pre-pandemic in 2019. The 2021 oil demand growth remains unchanged at 5.95 million B/D, or approximately 6.6%. Led by demand growth in the US, China, and India, a 3.4% increase is expected in 2022 to 99.86 million B/D and would average more than 100 million B/D in the second half of the year. “Solid expectations exist for global economic growth in 2022,” OPEC said. “These include improved containment of COVID-19, particularly in emerging and developing countries, which are forecast to spur oil demand to reach pre-pandemic levels in 2022.” If the actual recovery tracks with these predictions, OPEC can dial back further its record-level supply cuts made in 2020. The IEA points to the growth expected in global electricity demand as spurring fossil-fuel demand, including oil, coal, and natural gas. After falling by around 1% in 2020, electricity demand growth may approach 5% in 2021 and 4% in 2022. The Asia Pacific region will account for the majority of the increases. China, the world’s largest consumer of electricity, leads the tally, accounting for more than 50% of the 2022 growth. India, the third largest, will account for 9% of the global electricity growth. Renewables are expected to be able to serve around half of the projected growth in global demand in 2021 and 2022. IEA wrote, “Renewable electricity generation continues to grow strongly—but cannot keep up with increasing demand. After expanding by 7% in 2020, electricity generation from renewables is forecast to increase by 8% in 2021 and by more than 6% in 2022.” Fossil fuel-based electricity is set to cover 45% of additional demand in 2021 and 40% in 2022. After declining by 4.6% in 2020, coal-fired electricity generation will increase by nearly 5% in 2021, exceeding pre-pandemic levels. In 2022, it will grow another 3% and could reach an all-time high. Natural gas-generated electricity lags coal because it is less commonly used in the Asia Pacific and competes with renewables in the US and Europe. It is expected to increase globally by 1% in 2021 and by nearly 2% in 2022 after declining by 2% in 2020. The US Energy Information Administration published a global financial review last month of 91 oil and gas companies, most headquartered in the US, in the first quarter 2021. It indicated that companies are implementing their plans announced over the past year to reduce capital expenditures to pay down debt. Capital expenditure in 1Q2021 was reported as $48 billion, 28% lower than in 1Q2020 and the second- lowest amount for any quarter since 2016. Cash from operations in Q1 this year totaled $79 billion, 19% higher than in 1Q2020; about 76% of companies had positive free cash flow. Overall, the companies decreased debt by $16 billion in 1Q2021, and the long-term debt-to-equity ratio decreased to 54%.


Author(s):  
Farshid Zabihian ◽  
Alan S. Fung

CO2 capture and storage (CCS) systems are technologies that can be used to reduce CO2 emissions by different industries where combustion is part of the process. A major problem of CCS system utilization in electricity generation industry is their high efficiency penalty in power plants. For different types of power plants fueled by oil, natural gas and coal, there are three main techniques that can be applied: • CO2 capture after combustion (post-combustion); • CO2 capture after concentration of flue gas by using pure oxygen in boilers and furnaces (oxy-fuel power plant); • CO2 capture before combustion (pre-combustion). More than 90% of electricity generation in Iran is based on fossil fuel power plants. Worldwide, electricity generation is responsible for 54% of GHG emissions. Thus, it is vital to reduce CO2 emission in fossil fuel-fired power plants. In this paper, it is shown that, by applying CO2 capture systems in power generation industry, very low CO2 emission intensity is possible but the energy and economic penalties are substantial. The analyses showed that for different technologies efficiency penalty could be as high as 25% and cost of electricity might increase by more than 65%. Two scenarios for Iranian electricity generation sector were investigated in this paper: installing CCS in the existing power plants with current technologies and replacing existing power plants by natural gas combined cycle plants equipped with CO2 capture system. The results revealed that the GHG intensity can be reduced from 610 to 79 gCO2eq/kWh in the first scenario and to 54 gCO2eq/kWh in the second scenario.


2022 ◽  
Author(s):  
Hadi Nabipour Afrouzi ◽  
Yuhani Pamodha Wimalaratna ◽  
Jubaer Ahmed ◽  
Kamyar Mehranzamir ◽  
San Chuin Liew ◽  
...  

Malaysia is one of the fastest emerging and developing countries in the world. To drive the economical workhorse, large amounts of power is required. The power demand has risen to 156,003 GWh per year in the year 2016, almost 30,000 GWh more than 5 years prior. Fossil fuels such as natural gas, coal, oil, and diesel have been the driving force powering Malaysia’s grids. However, these resources will not last forever, and they do harm to our environment. To counter this, renewable energy (RE) projects have been constructed all around Malaysia. This paper discusses on available and existing renewable energy systems (single/hybrid) in Malaysia and provides a comparison of their electricity generation capabilities. The renewable energy sources that are covered in this paper include Solar, Hydropower, Biomass, Tidal and Geothermal. At the moment, hydropower is the largest renewable energy producer, contributing to almost 15% of the country’s total energy generation. A lot of resources have been channeled towards the initiative of hydropower and it has definitely borne much fruit. This is followed by Solar Energy. Even though it is not as successful as hydropower, there is still a lot of avenues for it to grow in a tropical country like this. Malaysia is still relatively new in terms of power generation using biomass sources. There has been a gradual increase in the power generation using biofuels through the years and its future does look bright. Energy generation from wind, tidal, and geothermal sources has been rather challenging. Because of Malaysia’s geographical location, it experiences slow winds on average throughout the year. This has led to insufficient output for its financial input. Besides that, Malaysia also has relatively low tide, if compared to other Asian countries such as Indonesia and the Philippines. This contributed to the failure of tidal energy in Malaysia, but there have been signs of locations that can be suitable for this energy generation. Besides that, the country’s first geothermal power plant project failed due to a lack of preparation and discipline during the project’s execution. There is a high initial cost for geothermal projects, and the chances of failure are high if the necessary precautions are not followed. This could be one of the reasons why this branch of renewable energy has not been explored deeply.


Author(s):  
Carl Georg Seydel

In order to meet the ambitious reduction targets for future CO2 emissions and fossil fuel consumption, the extension of renewable power systems is mandatory. One main issue is the fluctuating and unpredictable availability of renewable energy. With a higher portion of renewable energy, a secure electricity supply becomes more challenging. On days with high electricity demand but low availability of renewable energy, fossil back up power plants with high flexibility and efficiency are needed. Most applicable for this requirements are combined cycle power plants, which provide both high flexibility and efficiency. On the other hand potential renewable energy is wasted during days with low electricity demand but high available renewable energy, because electricity cannot be stored yet economically in such vast amounts. In order to use the available renewable energy more efficiently, hydrogen could be produced via electrolysis during phases of surplus available renewable energy. The hydrogen serves as a high density energy storage, which can be used as an alternative fuel in combined cycle power plants for a highly efficient reconversion into electricity if necessary. In this study it is analyzed how the usage of hydrogen as the burner fuel will influence the performance of combined cycle power plants. Therefore the on- and off-design performance of a state of the art combined cycle power plant will be calculated at different ratios of hydrogen mixtures with natural gas. The thermodynamic calculations are made with the performance software GTlab of the German Aerospace Center. Furthermore the natural gas and CO2 savings for different hydrogen ratios will be quantified. The results show that the usage of hydrogen enriched fuel increases the combined cycle efficiency and power output. Accordingly a considerable reduction in CO2 emissions and fossil fuel consumption is possible.


2013 ◽  
Vol 734-737 ◽  
pp. 1861-1864 ◽  
Author(s):  
Zeynab Yazdani ◽  
Amirreza Naderipour ◽  
Mohd. Zaki Kamsah

The addition of renewable energy as the fifth source of Fuel Policy which was formulated under the 8th Malaysia Plan (20012005) to reduce dependency on fossil fuel and to address the rising global concern about climate change. This study is specifically on the GHG emissions from the consumption electricity are considered to be indirect emissions by the GHG Protocol guideline and effectiveness of using solar power Energy in order to calculate the current carbon footprint from electricity consumed at UTM and using Photo Voltaic (PV) as a renewable energy for reduce CO2 emission.


2021 ◽  
Vol 16 (Number 1) ◽  
pp. 79-96
Author(s):  
Karren Lee Hwei Khaw ◽  
Toh Jia Ni

This paper examined the impact of fossil fuel price and carbon dioxide (CO2) emission on renewable energy, using a sample of 14 Asian developing countries from the years 2000 to 2018. Fossil fuel prices, mainly those of crude oil and coal, are positively related to renewable energy capacity. CO2 emission is also a positive driver, indicating the significance of environmental concern. The results were consistent for both the upper-middle-income and lower-middle-income countries. Between fossil fuels and CO2 emission, the positive impact of CO2 emission outweighed that of fossil fuels. From a policy perspective, this paper concurs the need to shift huge subsidies away from fossil fuels to renewable energy and to enforce a heavy tax on CO2 emission for a sustainable environment.


Sign in / Sign up

Export Citation Format

Share Document