scholarly journals Working Principles of Vibroelectric Nano Generator in Wireless Sensor Networks: A Review

2019 ◽  
Vol 255 ◽  
pp. 02008
Author(s):  
Jee Siang ◽  
Lim Meng Hee ◽  
Mohd. Salman Leong

Wireless sensor networks are solely dependent on battery limits the operation as well as maintenance effort. Vibroelectric nano generator able to prolong the operation by converting ambient vibration and power the equipment. The working principles includes Piezoelectric, Electromagnetic, Triboelectric, Magnetostrictive and Flexoelectric. This paper discussed the principle operations and key function materials, the advantages and disadvantages are specified. Hybrid incorporated with solar, thermal or radio frequency is considered as current trend of nano generator with further improvement as future work.

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4281
Author(s):  
Ngoc-Thanh Dinh ◽  
Younghan Kim

Wireless sensor network (WSN) studies have been carried out for multiple years. At this stage, many real WSNs have been deployed. Therefore, configuration and updating are critical issues. In this paper, we discuss the issues of configuring and updating a wireless sensor network (WSN). Due to a large number of sensor nodes, in addition to the limited resources of each node, manual configuring turns out to be impossible. Therefore, various auto-configuration approaches have been proposed to address the above challenges. In this survey, we present a comprehensive review of auto-configuration mechanisms with the taxonomy of classifications of the existing studies. For each category, we discuss and compare the advantages and disadvantages of related schemes. Lastly, future works are discussed for the remaining issues in this topic.


2018 ◽  
Vol 45 (8) ◽  
pp. 659 ◽  
Author(s):  
C. R. Krull ◽  
L. F. McMillan ◽  
R. M. Fewster ◽  
R. van der Ree ◽  
R. Pech ◽  
...  

Context Wireless sensor networks (WSNs) are revolutionising areas of animal behaviour research and are advantageous based on their ability to be deployed remotely and unobtrusively, for long time periods in inaccessible areas. Aims We aimed to determine the feasibility of using a WSN to track detailed movement paths of small animals, e.g. rats (Rattus spp.) 100–400g, too small for current GPS technology, by calibrating active Radio Frequency Identification (RFID) tags and loggers using Radio Frequency Signal Strength Indicator (RSSI) as a proxy for distance. Active RFIDs are also called Wireless Identification (WID) tags. Methods Calibration tests were conducted using a grid of loggers (n=16) spaced at 45-m intervals in clear line-of-sight conditions. WID tags (n=16) were placed between the loggers at 45-m intervals. Eight ‘walks’ were also conducted through the grid using a single WID tag. This involved attaching the tag to a small bottle of water (to simulate the body of an animal), towed around the grid using a 1-m long tow line attached to a volunteer walker. The volunteer also held a GPS device that logged their track. Models were constructed to test the effects of distance, tag movement and individual differences in loggers and tags on the reliability of movement data. Key results Loggers were most successful at detecting tags at distances <50m. However, there was a significant difference in the detection probabilities of individual loggers and also the transmission performance of individual tags. Static tags were less likely to be detected than the mobile tag; and although RSSI was somewhat related to distance, the reliability of this parameter was highly variable. Implications We recommend caution in the future use of current radio frequency ID tags in wireless sensor networks to track the movement of small animals, and in the use of RSSI as an indicator of individual distance values, as extensive in situ calibration is required. ‘Off the shelf’ devices may vary in performance, rendering data unreliable. We emphasise the importance of calibrating all equipment in animal tracking studies to reduce data uncertainty and error.


2014 ◽  
Vol 977 ◽  
pp. 484-490
Author(s):  
Run Zeng

Wireless Sensor Networks (WSNs) are used in many applications in military and commercial areas. These applications often include the monitoring of sensitive information such as enemy movement on the battlefield or the location of personnel in a building. However, due to the highly resource constrained in sensor nodes, traditional security strategies always can do few with attacks on WSNs. In this Paper, we proposes a study of attacks and security mechanisms in WSNs. First, we summarize the attacks to WSNs and the security requirements based on the TCP\IP networking model, then we present the security solutions to each attack. Along the way we highlight the advantages and disadvantages of various WSN solutions and further compare and evaluate these solutions.


2011 ◽  
Vol 403-408 ◽  
pp. 1397-1400
Author(s):  
Ping Wang ◽  
Shi Wu Xu

Time synchronization is important for many applications in Wireless Sensor Networks, how to improve synchronization precision and reduce energy consumption are the two important aspects in Wireless Sensor Networks. In this paper, first, we introduce the TPSN and DMTS algorithms, after analyzing the advantages and disadvantages of both. Make use of two algorithms have been integrated. We proposed a DMSN time synchronization algorithm. Experiments show that ,comparing with the TPSN algorithm, DMSN algorithm has lower complexity and energy consumption.It can be easily applied in Wireless Sensor Networks.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4112
Author(s):  
Ayesha Akter Lata ◽  
Moonsoo Kang

Wireless sensor networks (WSNs) have been used for environmental monitoring and reporting for many decades. Energy consumption is a significant research topic because wireless sensor nodes are battery-operated to be highly energy-constrained. Several strategies have been introduced in routing and MAC (Medium Access Control) layer protocols to facilitate energy saving. At the routing layer, an energy-efficient routing protocol, known as opportunistic routing (OR), has been designed to improve efficiency. OR achieves energy efficiency via load-balancing, which forwards packets along multiple routes over WSNs. At the MAC layer, an energy-efficient MAC protocol known as the asynchronous duty-cycled MAC (ADCM) protocol achieves energy saving by turning on and off a sensor node’s transmitter and receiver to eliminate unnecessary energy wastage. These protocols each have their own advantages and disadvantages. OR achieves energy efficiency at the routing layer but it raises an issue at the MAC layer. ADCM achieves energy efficiency at the MAC layer, but it hinders the packet forwarding efficiency of the OR. To attain better energy efficiency, a combination of these two ideas led to the development of OR with asynchronous duty-cycled MAC (OR-ADCM). However, even with better energy efficiency, limitations still exist in combining load-balancing and duty-cycling due to conflicts in the inherent properties of OR and ADCM. In this paper, we present a survey of the evolution of OR-ADCM over WSNs to help the reader better understand and appreciate the details of this tradeoff, which we hope will lead to the development of better protocol designs.


2020 ◽  
Vol 16 (6) ◽  
pp. 155014772091323
Author(s):  
Hani Attar ◽  
Mohammad R Khosravi ◽  
Shmatkov Sergiy Igorovich ◽  
Kuchuk Nina Georgievan ◽  
Mohammad Alhihi

The best service mechanism in multimedia wireless sensor networks can be achieved based on the multimedia traffic flow by developing a proper simulation algorithm process model, to be a trustable indication for real implementations, which is proposed in this article, together with the algorithm model outcome analysis. The quality estimation of the proposed mechanism is investigated by simulating real data transmission and obtaining the integral criterion of the processed mechanism, to determine the queue formation and loading control. Accordingly, it was proved that the first-in first-out algorithm is not useful as a flow algorithm; however, it is regarded as suitable to be considered as the benchmark algorithm when compared with the other algorithms such as priority queue, custom queue, fair queuing, and weighted fair queuing algorithms. Finally, each algorithm’s advantages and disadvantages were verified and the best usage conditions according to certain parameters, such as packet loss probability, average time delay, and jitter, were declared.


2010 ◽  
Vol 21 (3) ◽  
pp. 035202 ◽  
Author(s):  
B Thorbjornsen ◽  
N M White ◽  
A D Brown ◽  
J S Reeve

Sign in / Sign up

Export Citation Format

Share Document