scholarly journals Concrete using sawdust as partial replacement of sand : Is it strong and does not endanger health?

2019 ◽  
Vol 258 ◽  
pp. 01015 ◽  
Author(s):  
Nurul Huda Suliman ◽  
Amir Atif Abdul Razak ◽  
Hazrina Mansor ◽  
Anizahyati Alisibramulisi ◽  
Norliyati Mohd Amin

This study was conducted to investigate the effectiveness of concrete using sawdust to partially replace the river sand which could reduce both environmental problems and construction cost. In this study, sawdust concrete has been produced where the river sand is replaced with sawdust by 5%, 10% and 15% of the total sand volume. Both wet concrete and hardened concrete (cubes specimens) were tested through material testing and cube testing to obtain the most optimum sawdust concrete design. In addition, specimens have also been tested in environmental laboratory to identify the extent of hazardous use of sawdust to consumer health. This is because the dust used is the waste taken from the unknown root of the level of cleanliness. The result shows that the most optimum design for producing sawdust concrete is that with 10% replacement of river sand. The result is based on the compressive strength obtained. The results of environmental study also show that this sawdust concrete is free from any harmful to health contaminants.

This paper presents an experimental investigation on the properties of concrete in which like cement is partially replacing by used nano silica and is partially replacing by used waste foundry sand. Because now a day the world wide consumption of sand as cement and as fine aggregate in concrete production is very high. Nano silica and waste foundry sand are major by product of casting industry and create land pollution. The cement will be replaced with nano silica and the river sand will be replaced with waste foundry sand (0%, 5%, 10%, 15%, 20%). This experimental investigation was done and found out that with the increase in the nano silica and waste foundry sand ratio. Compression test has been done to find out the compressive strength of concrete at the age of 7, 14, 21, and 28. Test result indicates in increasing compressive strength of plain concrete by inclusion of nano silica as a partial replacement of cement and waste foundry sand as a partial replacement of fine aggregate.


Author(s):  
Safiki Ainomugisha ◽  
Bisaso Edwin ◽  
Bazairwe Annet

Concrete has been the world’s most consumed construction material, with over 10 billion tons of concrete annually. This is mainly due to its excellent mechanical and durability properties plus high mouldability. However, one of its major constituents; Ordinary Portland Cement is reported to be expensive and unaffordable by most low-income earners. Its production contributes about 5%–8% of global CO2 greenhouse emissions. This is most likely to increase exponentially with the demand of Ordinary Portland Cement estimated to rise by 200%, reaching 6000 million tons/year by 2050.  Therefore, different countries are aiming at finding alternative sustainable construction materials that are more affordable and offer greener options reducing reliance on non-renewable sources. Therefore, this study aimed at assessing the possibility of utilizing sugarcane bagasse ash from co-generation in sugar factories as supplementary material in concrete. Physical and chemical properties of this sugarcane bagasse ash were obtained plus physical and mechanical properties of fresh and hardened concrete made with partial replacement of Ordinary Portland Cement. Cost-benefit analysis of concrete was also assessed. The study was carried using 63 concrete cubes of size 150cm3 with water absorption studied as per BS 1881-122; slump test to BS 1881-102; and compressive strength and density of concrete according to BS 1881-116. The cement binder was replaced with sugarcane bagasse ash 0%, 5%, 10%, 15%, 20%, 25% and 30% by proportion of weight. Results showed the bulk density of sugarcane bagasse ash at 474.33kg/m3, the specific gravity of 1.81, and 65% of bagasse ash has a particle size of less than 0.28mm. Chemically, sugarcane bagasse ash contained SiO2, Fe2O3, and Al2O3 at 63.59%, 3.39%, and 5.66% respectively. A 10% replacement of cement gave optimum compressive strength of 26.17MPa. This 10% replacement demonstrated a cost saving of 5.65% compared with conventional concrete. 


Author(s):  
C.H. Aginam ◽  
C.M. Nwakaire ◽  
P.D. Onodagu ◽  
N.M. Ezema

The use of crushed quarry dust as a partial replacement of river sand in concrete production was investigated in this study. This is expedient as quarry dust can be available at some locations with insufficient river sand for construction purposes. The use of quarry dust is also in concrete is also a measure necessary for improvement of concrete strength. River sand was replaced with quarry dust for different mix designs of concrete for 0% to 25% replacement levels with 5% intervals. The physical properties of river sand and quarry dust were tested and reported and the workability as well as compressive strengths of the concrete mixtures were also tested. It was observed that the slump values increased with increase in percentage replacement of sand with quarry dust. The compressive strength of cubes at 28 day curing for control mixture of 1:3:6 at 0% partial replacement of river sand with quarry dust was 12.6N/mm2 but compressive strengths of 21.5 N/mm2 and 26.0 N/mm2 were gotten for 1:2:4 concrete and 1:1.5:3 concrete respectively. As the quarry dust content increased to 25%, the 28day compressive strength increased to 13.58 N/mm2 and 21.57 N/mm2 for the 1:3:6 and 1:2:4 mixes respectively. Compressive strength values decreased to a value of 25.72N/mm2 for the 1:1.5:3 concrete mix. The maximum compressive strength values were reached at 20% quarry dust content at the age of 28 days for the three concrete grades investigated. The increase in compressive strength with inclusion of quarry dust was attributed to the higher specific gravity of quarry dust above river sand. The compressive strength of quarry dust concrete continued to increase with age for all the percentages of quarry dust contents. Quarry dust was recommended as a suitable partial replacement for river bed sand in concrete production.


Author(s):  
Joseph A. Ige ◽  
Mukaila A. Anifowose ◽  
Samson O. Odeyemi ◽  
Suleiman A. Adebara ◽  
Mufutau O. Oyeleke

This research assessed the effect of Nigerian rice husk ash (RHA) and calcium chloride (CaCl2) as partial replacement of cement in concrete grade 20. Rice husk ash (RHA) is obtained by combustion of rice husk in a controlled temperature. The replacement of OPC with rice husk ash (RHA) were 0%, 5%, 10%, 15% and 20%. 1% of Calcium Chloride was blended with OPC/RHA in all the test specimens except from control mix. Concrete cubes of sizes 150mm x 150mm x 150mm were cast and cured in water for 7, 14 and 28 days respectively. Slump test was conducted on fresh concrete while density test and compressive strength test were conducted on hardened concrete. The slump results revealed that the concrete becomes less workable (stiff) as percentage increases. The compressive strength result at 28 days revealed that 5%RHA/1%CaCl2 have the highest strength of 26.82N/mm2 while 20%RHA/1%CaCl2 have the lowest strength (21.48N/mm2). Integration of 5%RHA/1%CaCl2 and 10%RHA/1%CaCl2 as cement replacement will produce a concrete of higher compressive strength compared to conventional concrete in grade 20 concrete.


2015 ◽  
Vol 1100 ◽  
pp. 128-132
Author(s):  
Adam Hubáček ◽  
Tomáš Jarolím ◽  
Petra Macháňová

The paper deals with the topical theme of concrete for watertight tunnel lining, currently solved in the Czech Republic and abroad. The focus is on high water-tightness of concrete for production of these specific structures and other requirements from the point of durability of concrete for watertight tunnel lining. Experimental work followed previous research and was focused on testing of selected properties of concrete for watertight tunnel lining, either with only cement as a binder (reference mixtures) or with partial replacement of cement with fly ash from Detmarovice power plant. Manufactured specimens of fresh and hardened concrete were used for testing of development of compressive strength, depth of penetration with pressure water and development in hydration heat in time.


2018 ◽  
Vol 162 ◽  
pp. 02017
Author(s):  
Nada Aljalawi ◽  
Amar Yahia AL-Awadi

This paper is devoted to investigate the effect of internal curing technique on the properties of self-compacting concrete. In this study, self-compacting concrete is produced by using limestone powder as partial replacement by weight of cement with percentage of (5%), sand is partially replaced by volume with saturated fine lightweight aggregate which is thermostone aggregate as internal curing material in three percentages of (5%, 10%, 15%) for self-compacting concrete, and the use of two external curing conditions which are water and air. The experimental work was divided into three parts: in the first part, the workability tests of fresh self-compacting concrete were conducted. The second part included conducting compressive strength test and modulus of rupture test at ages of (7, 28 and 90) days. The third part included doing the shrinkage test at age of (7, 14, 21, 28) days. The results show that internally cured self-compacting concrete has the best workability and the best properties of hardened concrete which include (compressive strength, modulus of rupture) of externally cured self-compacting concrete with both water and air as compared with reference concretes. Also, the hardened properties of internally cured self-compacting concrete with percentage of (5%) with thermostone aggregate is the best as compared with that of percentages (10% and 15%) in both external curing conditions. In general, the results of shrinkage test have shown reduction in shrinkage of internally cured self-compacting concrete as compared with reference concretes and this reduction increases with increase in the thermostone aggregate content-within-self-compacting-concrete.


Author(s):  
S.O Ajamu ◽  
I.A Raheem ◽  
S.B Attah ◽  
J.O Onicha

Natural river sand is one of the important constituent materials in concrete production while stone dust is a material obtained from crusher plants which is also sometimes being used either partially or fully in replacement of natural river sand in concrete production. Use of stone dust in concrete not only improves the quality of concrete but also conserve the natural river sand. However, due its scarcity and environmental degradation caused resulting from excessive mining of Natural river sand, there is need to investigate an alternative material of the same quality which can replace river sand in concrete production. In the present study, experiments were carried out to study the gradation of aggregates, workability, compressive strength and split tensile strength of concrete made using quarry dust as replacement of fine aggregate at 0, 25, 50, 75, and 100%. Grade M15 of concrete was produced with ordinary Portland cement (OPC) for referral concrete while M25 of concrete was prepared for compressive strength and split tensile strength concrete. Workability and Compressive strength were determined at different replacement level of fine aggregate and optimum replacement level was determined based on compressive strength. Results showed that by replacing 50% of fine aggregate with quarry dust, concrete of maximum compressive strength can be produced as compared to all other replacement levels. The effect of quarry dust on compressive strength and split tensile strength was investigated and from the overall result obtained, it was observed that the compressive strength and split tensile strength increased significantly for all the curing ages from 0% to 50% replacement level of quarry dust. Maximum value obtained for 28day compressive and tensile strength were 25N/mm2 and 2.3N/mm2 respectively and this occurred at 50% replacement.


Author(s):  
L. S. Gwarah ◽  
B. M. Akatah ◽  
I. Onungwe ◽  
P. P. Akpan

The investigation of sawdust ash (SDA) as a partial replacement for cement in concrete was studied owing to the high cost and increasing demand for cement in a harsh economy and considering the presence of limited construction materials and waste to wealth policy. Ordinary Portland Cement (OPC) was replaced by 0%, 5%, 10%, 15%, 20%, 25% and 30% of SDA. Slump test and consistency test (flow table apparatus test) were conducted on the freshly mixed concrete sample, and compressive strength test was conducted on the hardened concrete cubes of 150mm2, which was cured between 7, 14, 21 and 28 days. The results revealed that the slump decreases as the SDA content increases in percentage, while the consistency of the freshly mixed concrete remarkably moves from high, medium to low as the SDA content increases. The compressive strength of the hardened concrete undergone a decrease in strength, as the partial replacement of OPC with SDA increases. By the results interpretation, it is observed that 5% to 10% SDA when replaced with OPC can still result in the desired strength of concrete.


Author(s):  
Oluwarotimi Michael Olofinnade ◽  
Isaac T. Oyawoye

Utilization of concrete wastes as aggregate in conventional concrete is regarded as a promising way of achieving sustainability within the built-up environment. This study investigated the performance of high strength concrete produced using recycled aggregate (RCA) with the addition of calcined clay in the concrete mixes. The recycled aggregate was sourced from concrete rubbles and treated by soaking in water, while calcined clay was sourced from the pilot pozzolana plant of the Nigerian Building and Road Research Institute (NBRRI). The recycled concrete aggregates were used as a replacement for coarse aggregate at levels of 0, 20, 40, 60, 80 and 100%, using a mix ratio of 1:1:2 at a constant water-binder ratio of 0.25. Superplasticizer was added to ensure the workability of the mixes. The calcined clay was added at 15 and 20% partial replacement for cement in the mixes. Physical and chemical properties of the materials used were determined, while the workability of the concrete mixes was examined using the slump. The compressive strength of the hardened concrete was determined after 7, 28 and 56 days of curing using 100 mm cube samples. Scanning Electron Microscope (SEM) was used to evaluate the morphology of selected concrete. Results showed that soaking of the recycled aggregate in water limit the water absorption rate of the RCA aggregates in the mixes, while the addition of calcined clay was observed to slightly reduce the workability of the concrete mixes. A reduction trend in compressive strength was noticed as the percentage of recycled aggregate increases, however, a significant increase in compressive strength was observed with the addition of calcined clay at 15% cement replacement. An optimum concrete mix containing 20% recycled aggregate and 15% calcined clay showed improve performance compare to the other mixes. The implication of these results suggests that recycled concrete aggregate can be used for the production of sustainable structural concrete.


Sign in / Sign up

Export Citation Format

Share Document