scholarly journals Cost risk of construction of small hydroelectric power plants

2019 ◽  
Vol 262 ◽  
pp. 07004 ◽  
Author(s):  
Jarosław Górecki ◽  
Ewa Płoszaj

The growing demand for electricity forces the humanity to find the most economical methods of its production. Functioning without electricity in today's world deprives human from the possibility of a free existence, and even completely prevents it because of the technicisation of society. Growing awareness of acquiring "clean" environmentally-friendly energy from renewable sources contributes to the successive development of this sector of the economy. The purpose of the article was to analyse the risk of construction costs for small hydroelectric power plants along with an indication of the location and needs of a small hydroelectric power plant in Poland. The subject of the study was a small hydroelectric power plant producing electricity, using a turbine to convert the kinetic energy of water into mechanical energy. Aiming at illustrating the benefits of the discussed investment based on the estimation of construction costs and, as a result, financial results, a specific case of a small hydroelectric power plant located in the region of Kujawsko-Pomorskie [Kuyavian-Pomeranian Viovodeship] in central Poland was analysed. The intended research objective was achieved using industry literature, magazines as well as technical knowledge of persons holding building qualifications (including hydro-technical construction) and materials made available by two Bydgoszcz companies specializing in the implementation of small hydroelectric power plants. TheCOMAR- Jarek Górecki®algorithm, which operates in the industry as the author's concept of calculating the variation of financial outlays incurred for the implementation of investment and construction projects, was used to analyse the risk of costs of a construction project.

Author(s):  
Mikhail Balzannikov

The article describes run-of-the-river hydroelectric power plants. The authors specify the importance of performing technical and economic calculations in justifying the large-sized units of the water-supplying channel of a run-of-the-river hydroelectric power plant: turbine pits and suction (discharge) pipes. The study shows that the amount of construction work and the total cost of building a hydroelectric power plant depend on the size of these water supply units. The research objective is to analyze the validity of establishing the main dimensions of the suction pipes for modern technical and economic conditions. The researchers use the discounted income method. The calculations are performed for a hydroelectric power plant with an elbow suction pipe. The analysis of how the operating conditions of a hydroelectric power plant influence the savings of construction resources is carried out. The analysis shows that saving construction resources by reducing the length of the suction pipe is justified if the hydroelectric power plamt is designed to work only at peak power loads. For hydroelectric power plants operating at semi-peak or base power loads, the additional construction costs would be appropriate if leading to the decrease in pressure loss and to the increase in electricity generation.


Author(s):  
M. I. Balzannikov ◽  
E. G. Vyshkin

The paper presents the analysis of different types of impact the hydroelectric power plants’ reservoirs could make on the environment. Hydroelectric power plants (HPP) produce ecologically safe energy and correspond to the modern striving for sustainability because they are operated on renewable energy sources. At the same time they can provoke various potential dangers for the environment. The objective of the investigation is to demonstrate the interrelation between the type and structure of a hydroelectric power plant and the way its reservoir may impact on the nature surrounding the plant. These effects may be direct and indirect, positive and negative and vary from insignificant that can be easily fixed to those that are irreversible and catastrophic. The latter should be taken into account during the design of HPP.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1502 ◽  
Author(s):  
Evrencan Özcan ◽  
Rabia Yumuşak ◽  
Tamer Eren

In this study, maintenance planning problem is handled in one of the hydroelectric power plants which directly affect Turkey’s energy supply security with a fifth share in the total generation. In this study, a result is obtained by taking into consideration the multi-objective and multi-criteria structure of the maintenance planning in the hydroelectric power plants with thousands of complex equipment and the direct effect of this equipment on uninterrupted and low-cost electricity generation. In the first stage, the risk levels of the equipment in terms of the power plant are obtained with the combination of AHP (Analytical Hierarchy Process) and TOPSIS (technique for order preference by similarity to ideal solution) which are frequently used in the literature due to their advantages. Department-based maintenance plans of all equipment for periodic and revision maintenance strategies are formed by integrating these values into the time allocated for maintenance and the number of employees constraints. As a result of the application of this methodology which is designed for the first time in the literature with the integration of multi-criteria decision-making methods for the maintenance planning problem in a hydroelectric power plant, all elements that prevent the sustainable energy supply in the power plant are eliminated.


2011 ◽  
Vol 59 (4) ◽  
pp. 507-511 ◽  
Author(s):  
A. Sikorski ◽  
M. Korzeniewski

AC/DC/AC converter in a small hydroelectric power plant The article discusses application of AC/DC/AC converter cooperating with an induction generator in small hydroelectric power plants. The induction generator works with power grid or a separated group of receivers, enabling to generate power even at low speeds of the turbine. The article provides also results of the investigation concerning the functioning of the generator coupled with AC/DC/AC converter in steady and transient states during start-up and voltage decay.


2018 ◽  
Vol 7 (2.13) ◽  
pp. 173
Author(s):  
Alaybek D. Obozov ◽  
Ruslan A. Akparaliyev ◽  
Taalaybek T. Mederov ◽  
Victor G. Krasnov

This paper is dedicated to comparative analysis and description of a micro hydroelectric power plant with bi-rotor hydro generator. Based on the characteristics analysis, this paper describes a renewable energy source for a small watercourse; the feasibility of micro hydroelectric power plants with bi-rotor hydro generator is demonstrated. The features of their operation require in-depth research to substantiate parameters of such installations. This paper presents the analysis of the usage of micro hydroelectric solutions with bi-rotor hydro generator. The lattice theory problem was solved, which made it possible to determine the shape of the profile according to a given law of velocity distribution (pressure) on the contour. The experimental stand was developed, and the experiments were conducted to identify the dependence of the frequency of rotation from the flow and the dependence of the rotational frequencies of hydro turbines from various loads. Based on the results obtained, the optimum values of the rotational speed were identified. Presented results of experimental research are of significance and can be applied practically in design of micro hydroelectric power plants with bi-rotor hydro generator. Keywords: Bi-Rotor Hydro Generator; Differential Equation; Rotational Flows; Function; Hydraulic Models; Kinetic Energy; Renewable Energy Sources; Velocity Measurements.                                                                                                                     This paper is dedicated to comparative analysis and description of a micro hydroelectric power plant with bi-rotor hydro generator. Based on the characteristics analysis, this paper describes a renewable energy source for a small watercourse; the feasibility of micro hydroelectric power plants with bi-rotor hydro generator is demonstrated. The features of their operation require in-depth research to substantiate parameters of such installations. This paper presents the analysis of the usage of micro hydroelectric solutions with bi-rotor hydro generator. The lattice theory problem was solved, which made it possible to determine the shape of the profile according to a given law of velocity distribution (pressure) on the contour. The experimental stand was developed, and the experiments were conducted to identify the dependence of the frequency of rotation from the flow and the dependence of the rotational frequencies of hydro turbines from various loads. Based on the results obtained, the optimum values of the rotational speed were identified. Presented results of experimental research are of significance and can be applied practically in design of micro hydroelectric power plants with bi-rotor hydro generator.          


Author(s):  
Washington Orlando Irrazabal Bohorquez ◽  
Joa˜o Roberto Barbosa

In the Ecuadorian electrical market, several sugar plants, which significantly participate in the local electricity market, are producing their own energy and commercializing the surplus to the electrical market. This study evaluates the integral use of the sugar cane bagasse for productive process on a Cogeneration Power Plant in an Ecuadorian Sugar Company [8]. The electrical generation based on biomass requires a great initial investment. The cost is around US$ 800/kW installed, twice the US$ 400/kW initial investment of conventional thermoelectric power plant and almost equal to the US$ 1,000/kW initial cost of hydroelectric power plant [5]. A thermoeconomic study was carried out on the production of electricity and the sales of the surplus of 27 MWe average produced by the power plant. An operational analysis was made using instantaneous values from the estimated curves of demand and generation of electricity. From the results, it was concluded that the generated electricity costs are 0.0443 US$/kWh, while the costs of the electricity from Fossil Power Plants (burning fuel oil, diesel fuel and natural gas) are in the range 0.03–0.15 US$/kWh and from Hydroelectric Plants are about 0.02 US$/kWh. Cogeneration power plants burning sugar cane bagasse could contribute to the mitigation of climatic change. This specific case study shows the reduction of the prospective emissions of greenhouse gases, around 55,188 ton of CO2 equivalent yearly for this cogeneration power plant.


Author(s):  
Ottentri Ottentri ◽  
Hendi Matalata

The need for electrical energy is a necessity that can not be ditawar–tawar anymore for a life worthy of every person in this day. Generally, remote rural areas located in mountainous areas have a large potential of water energy, so that the hydroelectric power plant is one of the energy sources that can be developed. Jambi is an area covered with Batanghari River flows. This research aims to know how the work process of Microhydro power plant.  Components of the essential components of miniature microhydro power plants are reservoirs, rapid pipes, turbines, generators where these components are not loose bias, interrelated to one another. Round of Tubin obtained from the experiment is 400 rpm with water discharge 0.0016 m3/s. The maximum voltage generated by the generator is 18 volts. Voltage generated from the generator to charging the Batrai used inverter of 13.1 volts. The load will remain on even though the main energy source is the generator stop in the same, because the energy of the second is Batrai.


2019 ◽  
Vol 2 (1) ◽  
pp. 1-9
Author(s):  
Sugeng . ◽  
Taufiqur Rokhman ◽  
Paridawati . ◽  
Agus Sofwan

 In the Department of Electrical Engineering,Islamic University "45" Bekasiuntil now does not have a laboratory of Renewable energy. In this research, a hybrid power plants have been designed by combined between hydroelectric power plants and solar power plants.From the design result of the Solar Cell Power Plant, obtained that for 1 to 4 pieces of 100 Wp solar panels obtained the generation voltage of 21.12 volts generating power of 18.80 Watts on average time for 7.8 hours. Whereas for MHP the average voltage is 10.81 Volt and the generation power is 41.48 Watts for 8 hours of use.


2021 ◽  
Vol 2131 (3) ◽  
pp. 032071
Author(s):  
A A Devyatkin ◽  
S V Titov ◽  
V V Konovalov

Abstract Comparative analysis of methods of obtaining electricity from a renewable energy source is carried out. Various designs and op-tions for small hydroelectric power plants have been proposed. Positive and negative factors of structures under consideration and their impact on the environment are analyzed. The main characteristics of the flow (speed, head) for the choice of the optimal variant of hydroelectric power plant have been determined. Three variants of impellers for free-flow hydroelectric power plants are proposed with a comparison of the efficien-cy of each variant. An analysis was carried out and an impeller based on a Darrieus rotor was selected for further research. Simulation was performed in the Flow Simulation program. The initial data for the design of Darrieus rotor operating in a liquid were the diameter and width of the impeller. The calculations involved a rotor with straight and swirling blades. The swirling blades rotor is self-starting. In the course of the calcula-tion, the speed of the liquid flow approaching the rotor and the rotor speed were changed. As a result of cal-culation, the value of the positive moment for self-starting was determined, which occurs at an incident flow velocity of at least 1.3 m/s.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6400
Author(s):  
Sara Antomarioni ◽  
Marjorie Maria Bellinello ◽  
Maurizio Bevilacqua ◽  
Filippo Emanuele Ciarapica ◽  
Renan Favarão da Silva ◽  
...  

Power plants are required to supply the electric demand efficiently, and appropriate failure analysis is necessary for ensuring their reliability. This paper proposes a framework to extend the failure analysis: indeed, the outcomes traditionally carried out through techniques such as the Failure Mode and Effects Analysis (FMEA) are elaborated through data-driven methods. In detail, the Association Rule Mining (ARM) is applied in order to define the relationships among failure modes and related characteristics that are likely to occur concurrently. The Social Network Analysis (SNA) is then used to represent and analyze these relationships. The main novelty of this work is represented by support in the maintenance management process based not only on the traditional failure analysis but also on a data-driven approach. Moreover, the visual representation of the results provides valuable support in terms of comprehension of the context to implement appropriate actions. The proposed approach is applied to the case study of a hydroelectric power plant, using real-life data.


Sign in / Sign up

Export Citation Format

Share Document