scholarly journals Impact of changes in the fuel injection controller settings on the power and torque performance depending on the engine speed

2019 ◽  
Vol 302 ◽  
pp. 01012
Author(s):  
Marietta Markiewicz ◽  
Natalia Dluhunovych

The internal combustion engine is the powerhouse of motor vehicles. The basic fuel used for self-ignition engine powering is diesel oil. The efficiency of an internal combustion engine depends on many factors and is defined by such parameters as power output, torque, and the engine rotational speed. The engine performance parameters can be improved by modification of the manufacturer’s computer software that controls the engine operation. The study presents results of tests of a drive unit involving adjusting the fuel injection controller settings. The modifications involved increasing the fuel dose and the air charge pressure. Tests were carried out on a load bearing chassis dynamometer. The research object was a self-ignition engine with 109 KM power and Common Rail injection system. Power and torque measurements were carried out for the engine rotational speed range up to 4000 rev/min. It was found that modifications of the manufacturer’s engine computer software contribute to power and torque increase for all the rotational speeds.

Author(s):  
Boon-Keat Chui ◽  
Harold J. Schock ◽  
Andrew M. Fedewa ◽  
Dan E. Richardson ◽  
Terry Shaw

The cylinder-kit assembly of an internal combustion engine experiences severe conditions during engine operation. The top compression ring, in particular, undergoes extreme stress directly from cylinder gas pressure, inertial and thermal loads. The top compression ring is often the most significantly affected piston ring, and one of the common resultant phenomena is high wear on the ring/bore surfaces. In many previous studies, the modeling of tribological phenomena at the top compression ring/bore region involves hydrodynamic and boundary lubrication, friction and wear. This present work accounts for an additional factor that may affect the piston ring/bore lubrication — the lubricant evaporative effect. A three-dimensional oil evaporative analysis is coupled into the calculation of mixed lubrication in a cyclic engine computation. The presence of the evaporation analysis allows the study of the temperature influence on the piston ring/bore lubrication in addition to its effect on oil viscosity. A prospective application of this model is in diesel engine analysis. Considering the broad operating range of modern diesel fuel injection systems, the injection timing can be made throughout the compression/expansion process. It is well demonstrated that certain areas of fuel injection operation can result in potential adverse consequences such as increased bore wear. A well known example is “bore wall fuel wetting.” Given concerns around the potential for wear-inducing interactions between the fuel injection plumes and the bore wall, we have explored a particular interaction: bore wear in response to an imposed local heating of the bore wall. The simulation result provides valuable insights on this interaction, in which higher bore wear is predicted around bore wall area with locally imposed wall heating.


2021 ◽  
Vol 75 (4) ◽  
pp. 90-97
Author(s):  
Gradynova Elena Nikolaevna ◽  
◽  
Gorina Maria Andreevna ◽  
Rodicheva Irina Vladimirovna ◽  
Yakynina Maria Andreevna ◽  
...  

The article examines, using the example of the laboratory work «Dismantling an internal combustion engine», the acquisition of skills in the maintenance and repair of motor vehicles from students of transport specialties. The methodology of laboratory work and methodological support is presented. Based on the testing of students, a conclusion was made about the possibility and ef-fectiveness of conducting full-scale laboratory work. Recommendations on laboratory work for students of transport and related specialties are given.


Author(s):  
E.T. Plaksina ◽  
A.B. Syritsky ◽  
A.S. Komshin

The article considers the main methods of internal combustion engine diagnostics. A method based on measuring the time intervals between the phases of the working cycle of the mechanism is described. An algorithm for measuring the time intervals from the formulation of the problem to the proof of the efficiency of this method on an internal combustion engine has been determined. The installation of the angle sensor on the crankshaft of the experimental bench engine VAZ 21126 is shown. The basis for the construction of a mathematical model of the crankshaft is presented and the main factors influencing its movement are identified. A criterion has been established according to which the misfire is determined most accurately. The results obtained can be used for developing diagnostic systems for internal combustion engines, as well as engines operating in extreme conditions, for example, beyond the Arctic Circle, on ships, etc.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 395
Author(s):  
Jeongwoo Song ◽  
Han Ho Song

The exergy destruction due to the irreversibility of the combustion process has been regarded as one of the key losses of an internal combustion engine. However, there has been little discussion on the direct relationship between the exergy destruction and the work output potential of an engine. In this study, an analytical approach is applied to discuss the relationship between the exergy destruction and efficiency by assuming a simple thermodynamic system simulating an internal combustion engine operation. In this simplified configuration, the exergy destruction during the combustion process is mainly affected by the temperature, which supports well-known facts in the literature. However, regardless of this exergy destruction, the work potential in this simple engine architecture is mainly affected by the pressure during the combustion process. In other words, if these pressure conditions are the same, increasing the system temperature to reduce the exergy destruction does not lead to an increase in the expansion work; rather, it only results in an increase in the remaining exergy after expansion. In a typical internal combustion engine, temperatures before combustion timing must be increased to reduce the exergy destruction, but increasing pressure before combustion timing is a key strategy to increase efficiency.


Author(s):  
Singh P. Shivakumar

An internal combustion engine essentially requires a fuel which must have sufficient calorific value to produce enough power, and oxygen for the combustion of fuel. In normal vehicles fuel will be supplied from a fuel tank equipped with it. And oxygen will be taken from the atmospheric itself. Under normal conditions the percentage of oxygen present in atmospheric air will be around 21% of the total volume. Studies shows that by increasing the oxygen percentage in the inlet air increases engine performance and reduces emission produced by the engine.


Sign in / Sign up

Export Citation Format

Share Document