scholarly journals Analytical Approach to the Exergy Destruction and the Simple Expansion Work Potential in the Constant Internal Energy and Volume Combustion Process

Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 395
Author(s):  
Jeongwoo Song ◽  
Han Ho Song

The exergy destruction due to the irreversibility of the combustion process has been regarded as one of the key losses of an internal combustion engine. However, there has been little discussion on the direct relationship between the exergy destruction and the work output potential of an engine. In this study, an analytical approach is applied to discuss the relationship between the exergy destruction and efficiency by assuming a simple thermodynamic system simulating an internal combustion engine operation. In this simplified configuration, the exergy destruction during the combustion process is mainly affected by the temperature, which supports well-known facts in the literature. However, regardless of this exergy destruction, the work potential in this simple engine architecture is mainly affected by the pressure during the combustion process. In other words, if these pressure conditions are the same, increasing the system temperature to reduce the exergy destruction does not lead to an increase in the expansion work; rather, it only results in an increase in the remaining exergy after expansion. In a typical internal combustion engine, temperatures before combustion timing must be increased to reduce the exergy destruction, but increasing pressure before combustion timing is a key strategy to increase efficiency.

2013 ◽  
Vol 744 ◽  
pp. 35-39
Author(s):  
Lei Ming Shi ◽  
Guang Hui Jia ◽  
Zhi Fei Zhang ◽  
Zhong Ming Xu

In order to obtain the foundation to the research on the Diesel Engine YN4100QB combustion process, exhaust, the optimal design of combustion chamber and the useful information for the design of exhaust muffler, the geometric model and mesh model of a type internal combustion engine are constructed by using FIRE software to analyze the working process of internal combustion engine. Exhaust noise is the main component of automobile noise in the study of controlling vehicle noise. It is primary to design a type of muffler which is good for agricultural automobile engine matching and noise reduction effect. The present car mufflers are all development means. So it is bound to cause the long cycle of product development and waste of resources. Even sometimes not only can it not reach the purpose of reducing the noise but also it leads to reduce the engine dynamic. The strength of the exhaust noise is closely related to engine combustion temperature and pressure. The calculation and initial parameters are applied to the software based on the combustion model and theory. According to the specific operation process of internal combustion engine. Five kinds of common operation condition was compiled. It is obtained for the detailed distribution parameters of combusted gas temperature pressure . It is also got for flow velocity of the fields in cylinder and given for the relation of the parameters and crankshaft angle for the further research. At the same time NOx emissions situation are got. The numerical results show that not only does it provide the 3D distribution data in different crank shaft angle inside the cylinder in the simulation of combustion process, but also it provides a basis for the engine combustion ,emission research, the optimization design of the combustion chamber and the useful information for the designs of muffler.


Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Abstract Numerical simulation of flow, combustion, heat release rate and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data are compared with experimental results and show excellent agreement for peak pressure and the rate of pressure rise as a function of crank angle. The results obtained for NO and CO are also found to be in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multi-component chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


2017 ◽  
Vol 07 (05) ◽  
pp. 92-99
Author(s):  
Mukhtar M.A. Morad ◽  
Abdulwahab A. Alnaqi ◽  
Ahmad E. Murad ◽  
Esam A.M. Husain ◽  
Hasan Mulla Ali ◽  
...  

2019 ◽  
Vol 178 (3) ◽  
pp. 182-186
Author(s):  
Zbigniew SROKA ◽  
Maciej DWORACZYŃSKI

The modification of the downsizing trend of internal combustion engines towards rightsizing is a new challenge for constructors. The change in the displacement volume of internal combustion engines accompanying the rightsizing idea may in fact mean a reduction or increase of the defining swept volume change factors and thus may affect the change in the operating characteristics as a result of changes in combustion process parameters - a research problem described in this publication. Incidents of changes in the displacement volume were considered along with the change of the compression space and at the change of the geometric degree of compression. The new form of the mathematical dependence describing the efficiency of the thermodynamic cycle makes it possible to evaluate the opera-tion indicators of the internal combustion engine along with the implementation of the rightsizing idea. The work demonstrated the in-variance of cycle efficiency with different forms of rightsizing.


Author(s):  
E.T. Plaksina ◽  
A.B. Syritsky ◽  
A.S. Komshin

The article considers the main methods of internal combustion engine diagnostics. A method based on measuring the time intervals between the phases of the working cycle of the mechanism is described. An algorithm for measuring the time intervals from the formulation of the problem to the proof of the efficiency of this method on an internal combustion engine has been determined. The installation of the angle sensor on the crankshaft of the experimental bench engine VAZ 21126 is shown. The basis for the construction of a mathematical model of the crankshaft is presented and the main factors influencing its movement are identified. A criterion has been established according to which the misfire is determined most accurately. The results obtained can be used for developing diagnostic systems for internal combustion engines, as well as engines operating in extreme conditions, for example, beyond the Arctic Circle, on ships, etc.


Author(s):  
Boon-Keat Chui ◽  
Harold J. Schock ◽  
Andrew M. Fedewa ◽  
Dan E. Richardson ◽  
Terry Shaw

The cylinder-kit assembly of an internal combustion engine experiences severe conditions during engine operation. The top compression ring, in particular, undergoes extreme stress directly from cylinder gas pressure, inertial and thermal loads. The top compression ring is often the most significantly affected piston ring, and one of the common resultant phenomena is high wear on the ring/bore surfaces. In many previous studies, the modeling of tribological phenomena at the top compression ring/bore region involves hydrodynamic and boundary lubrication, friction and wear. This present work accounts for an additional factor that may affect the piston ring/bore lubrication — the lubricant evaporative effect. A three-dimensional oil evaporative analysis is coupled into the calculation of mixed lubrication in a cyclic engine computation. The presence of the evaporation analysis allows the study of the temperature influence on the piston ring/bore lubrication in addition to its effect on oil viscosity. A prospective application of this model is in diesel engine analysis. Considering the broad operating range of modern diesel fuel injection systems, the injection timing can be made throughout the compression/expansion process. It is well demonstrated that certain areas of fuel injection operation can result in potential adverse consequences such as increased bore wear. A well known example is “bore wall fuel wetting.” Given concerns around the potential for wear-inducing interactions between the fuel injection plumes and the bore wall, we have explored a particular interaction: bore wear in response to an imposed local heating of the bore wall. The simulation result provides valuable insights on this interaction, in which higher bore wear is predicted around bore wall area with locally imposed wall heating.


2011 ◽  
Vol 144 (1) ◽  
pp. 37-48
Author(s):  
Karol CUPIAŁ ◽  
Wojciech TUTAK ◽  
Arkadiusz JAMROZIK ◽  
Arkadiusz KOCISZEWSKI

The results of numerical analysis the combustion process in turbocharged CI engine 6CT107 are presented in the paper. Engine was installed on the ANDORIA’s power generator of 100 kVA/80 kW. The results of modelling the combustion process for different angle setting fuel injection, compared with the results obtained by indicating the real engine. Numerical analysis was performed in two programs, designed for three-dimensional modelling of the thermal cycle the piston internal combustion engine, namely AVL FIRE and the KIVA-3V.


Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating ◽  
Andrew A. Pouring

Abstract Numerical simulation of flow, combustion phenomena and pollutants emission characteristics have been obtained on an homogeneous-charged internal combustion engine having conventional flat piston and five other bowl-in-piston geometries. The code employed here uses the time marching procedure and solves the governing partial differential equations of multi-component chemically reactive flow by finite difference method. The transient solution is marched out in a sequence of time steps. The results show that the piston geometry affects the local flame properties which subsequently influences the pollutants emission level. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


2019 ◽  
Vol 2 (3) ◽  
pp. 121-128
Author(s):  
N. S. Sevryugina ◽  
A. S. Apatenko

Introduction: the factors determining the development trends of the machine-building industry on the example of modernization of the internal combustion engine are considered. The evaluation of the effectiveness of cooperation between manufacturers and the scientific potential of leading scientists in the development of designs of gas-diesel engines. The requirement of time of increase of ecology of internal combustion engines is proved, the reasons braking mass introduction of gas-diesel engines for transport and technological cars are revealed. The parameter of influence on the thermal load of the piston group in gaseous fuel is allocated. The estimation of constructive perfection of development of system of cooling of the piston of the engine is given. The effects of increased temperature on individual parts of the piston in the form of scrapes, chips, causing failure of the internal combustion engine as a whole are shown. The influence of engine oil quality on the engine operation is revealed. It is proposed to Supplement the design of the internal combustion engine with an oil level control device, developed an algorite and a software product for calculating the residual life of the engine oil on key parameters, with the establishment of the term of their replacement.Methods: the study is based on the analysis of the works of leading domestic and foreign scientists in the field of improving the design of power equipment. The theoretical and methodological basis of the study was the system approach, methods of mathematical analysis, reliability theory, analytical and statistical processing of results.Results and discussion: the theoretical justification for the increased thermal load of piston in a gas-diesel engine, justifies the addition of the construction device control engine oil level and consideration of the resource and replacement intervals for the parameters of the actual physical and chemical condition, using the database presented in the software product.Conclusion: operation of gas-diesel engines requires from the operator more strict control over the temperature regime of the engine, the condition of the engine oil and the efficiency of the engine oil, the proposed solutions will allow to assess the quality of the engine oil in real time and to carry out its replacement according to the actual condition, which will ensure.


Author(s):  
Ashwani K. Gupta ◽  
Lu Jiang ◽  
Eugene L. Keating

Abstract Numerical simulation of flow, combustion phenomena and pollutants emission characteristics have been obtained on an internal combustion engine having conventional flat piston and advanced piston geometries. The code employed the time marching procedure that solves the governing partial differential equations of multi-component chemically reactive fluid flow by finite difference method. The transient solution is marched out in a sequence of time steps. The results show that both the piston geometry and inlet flow conditions affects the local flame properties which subsequently alters the pollutants emission levels. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for energy conservation and environmental pollution control.


Sign in / Sign up

Export Citation Format

Share Document