scholarly journals Distribution of the external pressure coefficients on the elliptic tower: experimental measurement compared with numerical modelling

2020 ◽  
Vol 313 ◽  
pp. 00047
Author(s):  
Michal Franek ◽  
Marek Macák ◽  
Oľga Hubová

The wind flow around the elliptical object was investigated experimentally in the BLWT wind tunnel in Bratislava and subsequently solved by computer wind flow simulation. On a high-rise building model, the external wind pressure coefficients were evaluated for different wind directions and then compared with the numerical CFD simulation in ANSYS, where different models of turbulence and mesh types were used. The aim of the article was to evaluate and compare the obtained values and after analysing the results to choose the most suitable model of turbulence and mesh types, which showed the smallest deviations from the experimental values.

2017 ◽  
Vol 13 (2) ◽  
pp. 149-155
Author(s):  
Soňa Medvecká ◽  
Oľga Ivánková ◽  
Marek Macák

Abstract Analysis of wind flow acting upon high-rise buildings is a very common topic. This paper deals with experiment in the Boundary Layer Wind Tunnel (BWLT) in Bratislava and comparison with the computational fluid dynamics (CFD) simulation and values given in the Eurocode. The analyzed object was the model of building with circular cross section (cylinder). External wind pressure coefficients were compared in three height levels of model.


2016 ◽  
Vol 837 ◽  
pp. 203-208 ◽  
Author(s):  
Olga Hubova ◽  
Lenka Konecna

The external wind pressure coefficients are based on the measurements on the structures without free-end flow near the top of vertical structures. The end-effect factor takes into account reduction of the pressures due to specific flow around the top of atypical building. The article is based on the experimental measurements in BLWT tunnel in Bratislava on the model of building with cross section of the quarter circle. The model was tested in two spaces - in steady and turbulent wind flow, by changing of wind direction and wind velocity. The end-effect factor depending on the wind direction is shown in the graphs.


2021 ◽  
Vol 11 (15) ◽  
pp. 7121
Author(s):  
Shouke Li ◽  
Feipeng Xiao ◽  
Yunfeng Zou ◽  
Shouying Li ◽  
Shucheng Yang ◽  
...  

Wind tunnel tests are carried out for the Commonwealth Advisory Aeronautical Research Council (CAARC) high-rise building with a scale of 1:400 in exposure categories D. The distribution law of extreme pressure coefficients under different conditions is studied. Probability distribution fitting is performed on the measured area-averaged extreme pressure coefficients. The general extreme value (GEV) distribution is preferred for probability distribution fitting of extreme pressure coefficients. From the comparison between the area-averaged coefficients and the value from GB50009-2012, it is indicated that the wind load coefficients from GB50009-2012 may be non-conservative for the CAARC building. The area reduction effect on the extreme wind pressure is smaller than that on the mean wind pressure from the code. The recommended formula of the area reduction factor for the extreme pressure coefficient is proposed in this study. It is found that the mean and the coefficient of variation (COV) for the directionality factors are 0.85 and 0.04, respectively, when the orientation of the building is given. If the uniform distribution is given for the building’s orientation, the mean value of the directionality factors is 0.88, which is close to the directionality factor of 0.90 given in the Chinese specifications.


2013 ◽  
Vol 12 (2) ◽  
pp. 079-086
Author(s):  
Grzegorz Bosak

The paper summarizes the results of wind tunnel tests of the influence of aerodynamic interference on wind action of a high-rise building design in Warsaw. Measurements were accomplished in Wind Engineering Laboratory of Cracow University of Technology. Wind pressures on external surfaces of the building model were acquired in two different situations. Firstly, only the building model was placed in the tunnel working section, secondly, the building model with the nearest surroundings was taken under consideration. A study of the character of wind action differences caused by the nearest surroundings of the building was the main aim of the paper. Wind pressure coefficients on the external building surfaces and the difference of horizontal wind action on full scale were compared.


2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
Fu-Bin Chen ◽  
Xiao-Lu Wang ◽  
Yun Zhao ◽  
Yuan-Bo Li ◽  
Qiu-Sheng Li ◽  
...  

High-rise buildings are very sensitive to wind excitations, and wind-induced responses have always been the key factors for structural design. Facade openings have often been used as aerodynamic measures for wind-resistant design of high-rise buildings to meet the requirement of structural safety and comfort. Obvious wind speed amplifications can also be observed inside the openings. Therefore, implementing wind turbines in the openings is of great importance for the utilization of abundant wind energy resources in high-rise buildings and the development of green buildings. Based on numerical simulation and wind tunnel testing, the wind loads and wind speed amplifications on high-rise buildings with openings are investigated in detail. The three-dimensional numerical simulation for wind effects on high-rise building with openings was firstly carried out on FLUENT 15.0 platform by SST k − ε model. The mean wind pressure coefficients and the wind flow characteristics were obtained. The wind speed amplifications at the opening were analyzed, and the distribution law of wind speed in the openings is presented. Meanwhile, a series of wind tunnel tests were conducted to assess the mean and fluctuating wind pressure coefficients in high-rise building models with various opening rates. The variation of wind pressure distribution at typical measuring layers with wind direction was analyzed. Finally, the wind speed amplifications in the openings were studied and verified by the numerical simulation results.


2016 ◽  
Vol 837 ◽  
pp. 1-4
Author(s):  
Roland Antal ◽  
Norbert Jendzelovsky

Analysis of wind flow upon high-rise buildings is very common topic. Nowadays, there are no general or analytical ways how to analyze wind effects on irregular shaped high-rise buildings complexes. Scaled experiments tested in wind tunnels are best for precise solutions, however they are time consuming and expensive too. Therefore we use computational modeling software based on finite volume method to analyze these effects and then, thanks to these analysis we can design structures and optimize them. Paper deals with simplified 3D analysis of wind effects on high-rise buildings complex "Panorama City" located in Bratislava-Slovakia. Through this analysis we obtain results for wind speed near objects and external pressure coefficient as well. Both of them will be helpful to gain insight for future constructions or verification of already constructed ones.


2021 ◽  
Vol 7 (10) ◽  
pp. 1787-1805
Author(s):  
Arun Kumar ◽  
Ritu Raj

This paper aims to study the wind flow characteristics and to analyze the wind pressure distribution on the surfaces around an irregular octagonal plan shape building model. There is a central open space in plan to provide more surface area around the building for natural ventilation. Plan area of the building is 300 m2(excluding the open space) and height is 50 m. Steady state flow of wind with 5% turbulence (moderate turbulence) under atmospheric boundary layer has been taken in the study. Numerical simulation with standard k-e model using ANSYS (CFX) software has been used for the purpose. Flow characteristics has been studied in terms of flow separation, reattachment of flow, creation of wakes and vortices. The surface pressure generated around the model has been studied in terms of coefficient of pressure. The model is symmetrical about both the axes in plan. Hence, study for different wind angle of attacks from 0° to 90° @ 30° interval has been conducted. The flow characteristics and unusual or critical coefficient of pressure on surfaces of the model observed have been discussed. Doi: 10.28991/cej-2021-03091760 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document