scholarly journals Replication of Pressure Swirl Atomizer by 3D Printing and Influence of Surface Roughness on the Atomization Quality

2020 ◽  
Vol 328 ◽  
pp. 01007
Author(s):  
Ondřej Cejpek ◽  
Milan Malý ◽  
Miloslav Bělka ◽  
Jan Jedelský

The replication of atomizers by 3D printing technology is a new approach of producing the pressure swirl atomizers. The surface roughness of 3D printed products and manufacturing accuracy of the 3D printing process influence the atomization of the liquid. The high-speed visualization of a spray, produced by scaled 3D printed atomizer, was performed. The spray stability, cone angle and breakup length were determined. Scaled 3D printed atomizers were tested at equivalent pressures of 0.25, 0.5 and 1 bar. Non-dimensionless parameter, Reynolds number, was preserved for the scaled atomizer. The effect of the surface roughness of the tangential ports, swirl chamber and discharge orifice on atomization was assessed at non-scaled pressure swirl atomizer. The roughness of a swirl chamber was created by corundum and ballotin blasting. The inlet pressures of 2.5, 5 and 10 bar were tested.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhengyan Guo ◽  
Yi Jin ◽  
Kai Zhang ◽  
Kanghong Yao ◽  
Yunbiao Wang ◽  
...  

Pressure swirl atomizers are widely used in gas turbine combustor; this paper is aimed at researching the effect of low ambient pressure (0.1 MPa to 0.01 MPa, lower than an atmosphere) on the spray cone angle of pressure swirl atomizer. The spray angle is captured by high-speed photography; then, an image post program is used to process the spray angle magnitude. A mathematical model of a single droplet’s movement and trajectory based on force analysis is proposed to validate the spray angle variation. The maximum variation of the spray cone angle, which is observed when fuel supply pressure drop through the atomizer is 1 MPa as the ambient pressure decreases from 0.1 MPa to 0.01 MPa, is found to be 23.9%. The experimental results show that the spray cone angle is expected to increase with the ambient pressure decrease; meanwhile, mathematical results agree well with this trend.


Author(s):  
D. R. Guildenbecher ◽  
R. R. Rachedi ◽  
P. E. Sojka

An experimental investigation was conducted to study the effects of increased ambient pressure (up to 6.89 MPa) and increased nozzle pressure drop (up to 2.8 MPa) on the cone angles for sprays produced by pressure-swirl atomizers having varying amounts of initial swirl. This study extends the classical results of DeCorso and Kemeny [1]. Shadow photography was used to measure cone angles at x/D0=10, 20, 40, and 60. Our lower pressure results for atomizer swirl numbers of 0.50 and 0.25 are consistent with those of DeCorso and Kemeny [1], who observed a decrease in cone angle with an increase in a pressure drop-ambient density product until a minimum cone angle was reached at ΔPρair1.6~200. Results for atomizers having higher swirl numbers do not match the DeCorso and Kemeny [1] results as well, suggesting that their correlation be used with caution. Another key finding is that an increase in ΔPρair1.6 to a value of 1000 leads to continued decreases in cone angle, but that a subsequent increase to 4000 has little effect on cone angle. Finally, there was little influence of atomizer pressure drop on cone angle, in contrast to findings of previous workers. These effects are hypothesized to be due to gas entrainment.


2018 ◽  
Vol 180 ◽  
pp. 02059 ◽  
Author(s):  
Milan Malý ◽  
Marcel Sapík ◽  
Jan Jedelský ◽  
Lada Janáčková ◽  
Miroslav Jícha ◽  
...  

Pressure-swirl atomizers are used in a wide range of industrial applications, e.g.: combustion, cooling, painting, food processing etc. Their spray characteristics are closely linked to the internal flow which predetermines the parameters of the liquid sheet formed at the discharge orifice. To achieve a better understanding of the spray formation process, the internal flow was characterised using Laser Doppler Anemometry (LDA) and high-speed imaging in a transparent model made of cast PMMA (Poly(methyl methacrylate)). The design of the transparent atomizer was derived from a pressure-swirl atomizer as used in a small gas turbine. Due to the small dimensions, it was manufactured in a scale of 10:1. It has modular concept and consists of three parts which were ground, polished and bolted together. The original kerosene-type jet A-1 fuel had to be replaced due to the necessity of a refractive index match. The new working liquid should also be colourless, non-aggressive to the PMMA and have the appropriate viscosity to achieve the same Reynolds number as in the original atomizer. Several liquids were chosen and tested to satisfy these requirements. P-Cymene was chosen as the suitable working liquid. The internal flow characteristics were consequently examined by LDA and high-speed camera using p-Cymene and Kerosene-type jet A-1 in comparative manner.


2015 ◽  
Vol 798 ◽  
pp. 190-194
Author(s):  
Mehmet Kahraman ◽  
Guven Komurgoz ◽  
Ibrahim Ozkol

Atomization quality of liquids has a great importance on the performance of combustion engines. In this study the internal flow phenome of pressure swirl atomizer is investigated by using numerical method. The design of swirl atomizer is performed based on the requested atomizer characteristics which are sauter mean diamer (SMD), spray cone angle and break up length. Prediction and understanding of liquid film dynamics in the atomizer inside are the fundamental ways to explore atomizer performance. The purpose of this study is to estimate the air core size and film thickness in pressure swirl atomizer by setting single phase numeric computations. This article concludes that the CFD validated swirl atomizer design can be achieved with the lower computational cost using stream function methodology.


Author(s):  
Saurabh Dikshit ◽  
Salim Channiwala ◽  
Digvijay Kulshreshtha ◽  
Kamlesh Chaudhari

The process of atomization is one in which a liquid jet or sheet is disintegrated by the kinetic energy of the liquid itself, or by exposure to high velocity air or gas, or as a result of mechanical energy applied externally. Combustion of liquid fuels in engines and industrial furnaces is dependent on effective atomization to increase the specific surface area of the fuel and thereby achieve high rate of mixing and evaporation. The pressure swirl atomizer is most common type atomizer used for combustion in gas turbine engines and industrial furnaces. The spray penetration is of prime importance for combustion designs. Over penetration of the spray leads to impingement of the fuel on walls of furnaces and combustors. On the other hand, if spray penetration is inadequate, fuel–air mixing is unsatisfactory. Optimum engine performance is obtained when the spray penetration is matched to the size and geometry of combustors. Methods for calculating penetration are therefore essential to sound engine design. Equally important are the spray cone angles and the drop size distribution in the sprays. An attempt is being made to experimentally investigate pressure swirl atomizer performance parameters such as spray cone angle, penetration length and drop size at different injection pressures ranging from 6 bar to 18 bar.


Author(s):  
Weijia Qian ◽  
Xin Hui ◽  
Chi Zhang ◽  
Quanhong Xu ◽  
Yuzhen Lin ◽  
...  

The internal flow and discharge parameters of a pressure swirl atomizer (PSA) are numerically investigated using a coupled Level-Set (LS)/Volume-of-Fluid (VOF) solver that combines the advantages of LS and algebraic VOF methods by maintaining the mass conservation and the interface sharpness simultaneously. Internal flow velocity profile and discharge parameters including discharge coefficient, film thickness, and spray cone angle are compared between simulation results and the experimental data that are available in the literature. A parametrical study is also performed to investigate the effects of the key geometric parameters of the PSA configuration on the discharge parameters. The geometric parameters studied are the length to diameter ratio of the swirl chamber, the length to diameter ratio of the exit orifice, the swirl chamber diameter to exit orifice diameter ratio, and the swirl chamber convergence angle.


2011 ◽  
Vol 189-193 ◽  
pp. 31-37 ◽  
Author(s):  
Ji Liang Wu ◽  
De Yuan Zhang ◽  
Xing Gang Jiang

This paper analyzed the velocity field of the section between outlet orifice and the conical swirl chamber with a kind of single inlet pressure atomizer using CFD (Computational Fluid Dynamics) method. A method of modifying the outlet orifice position referring to the swirl chamber in order to improve the spray angle and its homogeneity is proposed. The result of the experiments shows that it is a feasible method to improve the quality of this kind of atomizer.


Author(s):  
Edin Michael ◽  
Santhosh Kumar Keerthi ◽  
Krishna Kant ◽  
Pankaj Kolhe ◽  
Raja Banerjee ◽  
...  

Abstract This work reports experimental and numerical study of primary jet breakup of a pressure swirl atomizer. Experiments were performed in a constant volume spray chamber and the spray pattern was characterized as a function of different liquid/gas density ratios which was achieved by changing the ambient pressure. The liquid/gas density ratio was varied between ≈ 102 to 103 and the axial Reynold number was maintained at 6 × 103. Diffused backlight imaging in conjunction with high speed videography was used to visualize the spray. Parameters like spray cone angle, spray breakup length and flapping frequency was estimated. Additionally, POD analysis was performed to find the sheet instability modes. A corresponding numerical study using Coupled Level Set VOF method was performed keeping the liquid/gas density ratio of 10 and 102 to simulate the primary jet breakup using an in-house two-phase solver developed using OpenFOAM libraries. The solver was validated by following the numerical work of Fuster et al. Effect of computational mesh size on parameters like spray cone angle, breakup length was estimated.


Sign in / Sign up

Export Citation Format

Share Document