scholarly journals Evaluation of the partitioned mechanical properties and the hall-petch relationship of cast aluminum alloy cylinder head

2022 ◽  
Vol 355 ◽  
pp. 01003
Author(s):  
Kangjie Yan ◽  
Weiqing Huang ◽  
Zhengxing Zuo ◽  
Jinxiang Liu ◽  
Peirong Ren ◽  
...  

In view of the non-uniform distribution of mechanical properties of cast aluminum alloy cylinder head, the mechanical properties evaluation and microstructure heterogeneity of cylinder head were studied. The results showed that the head plate position of the cylinder head has the best mechanical properties and microstructure characterization, followed by the floor plate and the thick partition plate. The mechanical properties of the floor plate position attenuate with increasing temperature. From 23°C to 300°C, the tensile strength and yield strength decrease in the same range, but the break elongation changes most obviously. The mechanical properties and microstructure characterization of cylinder head in-situ sampling satisfy the Hall-Petch relationship. If the required ultimate tensile strength is not less than 255MPa, the upper threshold of the grain size, by considering the error limit of the Hall-Petch relationship, is 603.4μm, and the upper threshold of secondary dendrite arm spacing is 69.1μm. Meanwhile, established the relationship between hardness and yield strength, the average error of the nonlinear model is 4.35%. The prediction accuracy of the nonlinear model is sufficient to meet the actual needs of the engineering.

2004 ◽  
Vol 126 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Tsuyoshi Takahashi ◽  
Yoshio Sugimura ◽  
Katsuhiko Sasaki

Depending on casting methods, aluminum alloy cylinder heads differ greatly in quality and local strength as well as overall strength. Obviously, casting methods largely affect the durability of a cylinder head. Therefore, in order to precisely evaluate the durability of a newly-designed cylinder head by CAE, it is necessary to introduce a new method with the effects of a casting method taken into account. In our research, a method has been devised to be used in CAE in such processes from engineering to manufacturing for evaluation. More specifically, by using the method, metallurgical microstructure of cast aluminum alloy is analyzed by dividing cylinder head into such domains as lower deck, middle and upper deck parts for mechanical properties and a casting defect of porosity. The domain profile information on mechanical properties and porosity has helped us improve accuracy in the structural analysis.


2014 ◽  
Vol 875-877 ◽  
pp. 1397-1405 ◽  
Author(s):  
G. Dinesh Babu ◽  
M. Nageswara Rao

Cast aluminum alloy 354 is used extensively for production of critical automobile components, owing to its excellent castability and attractive combination of mechanical properties after heat-treatment. With the advent of higher performance engines, there has been a steady demand to further improve the mechanical behavior of the castings made of the alloy, among others, through improvements in processing. The present study explores the possibility of improving tensile properties of the alloy by adopting certain non-conventional aging treatments. The non-conventional treatments include aging cycles similar to T6I4 and T6I6 referred to in the published literature, artificial aging in two steps instead of in single step and artificial aging preceded by various natural aging times. The results show that none of these non-conventional treatments leads to improvement of all tensile properties compared to the standard T61 treatment. Significant hardening takes place in the alloy due to natural aging. Changing the time of natural aging preceding artificial aging was found to have little effect on tensile properties.


2012 ◽  
Vol 445 ◽  
pp. 277-282 ◽  
Author(s):  
Xue Zhi Zhang ◽  
Kazi Ahmmed ◽  
Meng Wang ◽  
Henry Hu

In this study a number of thermal treatment schemes over a wide range of temperatures between 120˚ to 350˚ C and times (30 120 minutes) have been experimented in an effort to understand the effect of thermal treatment on tensile properties of vacuum die cast modified aluminum alloy A356. The results show that, the morphology of eutectic silicon has a sound effect on the tensile properties of the tested alloy. The content of magnesium-based intermetallic phases, their morphology and distribution throughout the matrix affect the mechanical properties of the aged alloy as well. The reduction in the strengths of the alloy treated at 350°C for two hours should be at least attributed partly to the absence of the magnesium-based intermetallic phase. However the presence of sufficient amount of magnesium intermetallic phase had played important role in strengthening the alloy thermally treated at 200°C for 90 minutes.


2021 ◽  
Vol 75 (1) ◽  
pp. 31-37
Author(s):  
Aleksandra Pataric ◽  
Marija Mihailovic ◽  
Branislav Markovic ◽  
Miroslav Sokic ◽  
Andreja Radovanovic ◽  
...  

Microstructure assessment is crucial for the design and production of high-quality alloys such as cast aluminum alloy ingots. Along with the effect of a more homogeneous microstructure to result in much better mechanical properties, better as-cast alloy quality indicates a higher efficiency of the aluminum alloys production process. During the aluminum alloy solidification process many microstructural defects can occur, which deteriorate the mechanical properties and hence decrease the usability of such an ingot. Application of the electromagnetic field during the vertical continuous casting process significantly reduces occurrence of these defects. In the present study, EN AW 7075 alloy samples were cast with and without application of an electromagnetic field and examined regarding the microstructure, electrical conductivity, and changes in the phase composition. The obtained results clearly show that it is possible to decrease or avoid casting defects by the electromagnetic field application as verified by the microstructure characterization and quantification, electrical conductivity tests and differential thermal analysis (DTA).


2012 ◽  
Vol 602-604 ◽  
pp. 623-626 ◽  
Author(s):  
Seon Ho Kim ◽  
Kyu Sik Kim ◽  
Shae K. Kim ◽  
Young Ok Yoon ◽  
Kyu Sang Cho ◽  
...  

In this study, the microstructures and mechanical properties of the recently developed Eco-2024-T3 alloy were examined. Eco-2024 is made using Eco-Mg (Mg-Al2Ca) in place of element Mg during the manufacture of alloy 2024-T3. This is an alloy that has economic advantage and excellent properties. Alloy Eco-2024 showed smaller crystal grains that were distributed more evenly compared to the existing alloy 2024-T3. It consisted of Al matrices containing minute amounts of Al2CuMg, Al2Cu, and Ca phases and showed microstructures with reduced amounts of Fe phases or oxide. As a result of tensile tests, this alloy exhibited yield strength of 413 MPa, tensile strength of 527 MPa, and elongation of 15.4%. In other words, it showed higher strength than the existing alloy 2024 but was similar to the existing alloy 2024 in terms of elongation. In fatigue tests, alloy Eco-2024-T3 recorded fatigue limit of 330 MPa or around 80% of its yield strength; this is a much more excellent property compared to the existing alloy 2024-T3, which has fatigue limit of 250 MPa. Based on the aforementioned results, the correlation between the excellent mechanical properties of alloy Eco-2024-T3 and its microstructure was examined.


2016 ◽  
Vol 877 ◽  
pp. 56-61 ◽  
Author(s):  
Shinji Kumai ◽  
Yusuke Takayama ◽  
Ryoji Nakamura ◽  
Daisuke Shimosaka ◽  
Yohei Harada ◽  
...  

A horizontal-type twin roll casting method has been popular for producing aluminum alloy strips, however, it is characterized by a relatively low productivity (1~6 m/min). In contrast, a vertical-type high-speed twin-roll casting method possesses an extremely high productivity (60~120 m/min (1~2 m/s)) and an excellent heat extraction ability. The rapid cooling effect provided significant microstructure refinement and mechanical properties improvement in various kinds of cast aluminum alloy products. Not only “product to product recycling” but also “up-grade recycling” can be achieved by making good use of these merits. Two examples of application showing the potential of vertical-type high-speed twin roll casting method are presented. (1) Several kinds of Al-Si base alloy were cast into the strips. Not only strength and toughness but also formability was increased in the twin roll cast products. In particular, great improvement in deformability shows the potential of the twin-roll cast aluminum alloy products as substitutes for some wrought aluminum alloy products. (2) The vertical-type tandem twin-roll caster was able to fabricate a clad strip by single step. The A4045/A3003/A4045 aluminum alloy clad sheets produced by the twin-roll casting showed better mechanical properties than the conventional hot-roll bonded clad sheets.


Sign in / Sign up

Export Citation Format

Share Document