Valorization of glass powder waste, crushed and dune sands in the mix design of ultra-high performance fiber reinforced concrete: Assessing effect of waste variability

2021 ◽  
Vol 109 (1) ◽  
pp. 103
Author(s):  
Mourad Belkadi ◽  
Rabah Chaid ◽  
Arnaud Perrot

This work deals with the valorization of industrial glass waste as supplementary cementitious materials in Ultra High Performance Fiber-Reinforced Concrete (UHPFRC). It aims to take advantage of this type of by-product in order to improve both fresh and hardened performances of conventional cementitious materials. This study concerns the use of glass powder originating from different locations with slight variation in their chemical composition (named transparent, smoked, and opaque) as a supplementary cementitious material (substitution ratio: 20% of the cement weight). Series of standardized tests were performed to characterize the influence of these glass powders on both fresh state properties (slump flow) and hardened state properties of tested UHPFRC. Mechanical properties are measured after cure periods lasting from 2 to 28 days. The study on the microstructure of hardened concrete was made using scanning electron microscopy and water penetration. Obtained results show the beneficial effect brought by the addition of a significant dosage of glass powder (here 20% of the cement weight) on the behavior of concrete in its fresh and hardened state.

Author(s):  
Igor Chilin ◽  

Приведены результаты исследований и выполнена оценка влияния технологических факторов на реологические свойства самоуплотняющихся сталефибробетонных смесей, определены кратковременные и длительные физико-механические и деформативные характеристики сверхвысокопрочного сталефибробетона, включая определение его фактической морозостойкости.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 63
Author(s):  
Anna L. Mina ◽  
Michael F. Petrou ◽  
Konstantinos G. Trezos

The scope of this paper is to investigate the performance of ultra-high performance fiber reinforced concrete (UHPFRC) concrete slabs, under projectile impact. Mixture performance under impact loading was examined using bullets with 7.62 mm diameter and initial velocity 800 m/s. The UHPFRC, used in this study, consists of a combination of steel fibers of two lengths: 6 mm and 13 mm with the same diameter of 0.16 mm. Six composition mixtures were tested, four UHPFRC, one ultra-high performance concrete (UHPC), without steel fibers, and high strength concrete (HSC). Slabs with thicknesses of 15, 30, 50, and 70 mm were produced and subjected to real shotgun fire in the field. Penetration depth, material volume loss, and crater diameter were measured and analyzed. The test results show that the mixture with a combination of 3% 6 mm and 3% of 13 mm length of steel fibers exhibited the best resistance to projectile impact and only the slabs with 15 mm thickness had perforation. Empirical models that predict the depth of penetration were compared with the experimental results. This material can be used as an overlay to buildings or to construct small precast structures.


2017 ◽  
Vol 52 (2) ◽  
pp. 121-134 ◽  
Author(s):  
Duy-Liem Nguyen ◽  
Duc-Kien Thai ◽  
Dong-Joo Kim

This research investigated the effects of direct tensile response on the flexural resistance of ultra-high-performance fiber-reinforced concretes by performing sectional analysis. The correlations between direct tensile and flexural response of ultra-high-performance fiber-reinforced concretes were investigated in detail for the development of a design code of ultra-high-performance fiber-reinforced concrete flexural members as follows: (1) the tensile resistance of ultra-high-performance fiber-reinforced concretes right after first-cracking in tension should be higher than one-third of the first-cracking strength to obtain the deflection-hardening if the ultra-high-performance fiber-reinforced concretes show tensile strain-softening response; (2) the equivalent bottom strain of flexural member at the modulus of rupture is always higher than the strain capacity of ultra-high-performance fiber-reinforced concretes in tension; (3) the softening part in the direct tensile response of ultra-high-performance fiber-reinforced concretes significantly affects their flexural resistance; and (4) the moment resistance of ultra-high-performance fiber-reinforced concrete girders is more significantly influenced by the post-cracking tensile strength rather than the tensile strain capacity. Moreover, the size and geometry effects should be carefully considered in predicting the moment capacity of ultra-high-performance fiber-reinforced concrete beams.


Sign in / Sign up

Export Citation Format

Share Document