scholarly journals An introduction to a theory on the role of π-electrons of docosahexaenoic acid in brain function

OCL ◽  
2018 ◽  
Vol 25 (4) ◽  
pp. A402 ◽  
Author(s):  
MA Crawford ◽  
M Thabet ◽  
Y Wang

In Part I, we discuss the background to views on brain function and our thesis that it is conducted by π-electrons which perform sensory reception, memory, action, cognition and consciousness. Our thesis is consistent with the classical views of ion movement and synaptic protein strengthening. However, protein based views contain no element of precision for the signal. Precision is essential for true signal transduction of sensory input and the faithful execution of learnt neural pathways. In Part II, we incorporate these principles to discuss the mechanism whereby electron function adds precision of signal energy to the process through the Pauli Exclusion Principle. The Huxley-Hodgkin (HH) account of neural function describes the movement of sodium, potassium and calcium ions to create electrochemical potentials across membranes with well-established mathematical and experimental support. To explain learning, consciousness and perception, others have claimed brain function depends on protein synthesis or RNA coding. Some consider super position and collapse as the computational mechanism. This however is fragile with no mechanism described to protect from natural collapse and decoherence at the temperatures of the brain. A novel approach was adopted by Penrose and Hammeroff who describe consciousness as a function of ʻobjective reduction’ (ʻOR’) of the quantum state. This orchestrated OR activity (ʻOrch OR’) is taken to result in moments of conscious awareness and/or choice (Hameroff S, Penrose R. 2014 Consciousness in the universe: a review of the ʻOrch OR’ theory. Phys Life Rev 11(1): 39–78. Doi: 10.1016/j.plrev.2013.08.002. Epub 2013 Aug 20). Orch-OR operates in principle in protein tubules of neurons. This concept is non-computational and has received much attention with a convincing advocacy and its share of criticism. The advocacy includes the fossil record of organisms that emerged throughout the first Cambrian period with onset roughly 540 million years ago (mya). They had essential degrees of microtubular arrays in skeletal size, complexity and capability for quantum isolation. Attractive as this hypothesis maybe we point out that the brain is predominantly made of lipid not protein. We suggest that both protein and RNA in the brain would more likely been required to serve the extraordinary energy requirements for the brain. Early photosynthetic systems such as the dinoflagellates are rich in docosahexaenoic acid (DHA) including di-DHA phosphoglycerides as also in contemporary mammalian photoreceptors. We wish to discuss in Part II, quantum mechanical properties of the π-electrons of DHA suggestive of a mechanism for the depolarization of the receptor membrane at a precise energy levels as required for vision and neural signalling (Crawford MA, Broadhurst CL, Guest M et al., 2013. A quantum theory for the irreplaceable role of docosahexaenoic acid in neural cell signalling throughout evolution. Prostaglandins Leukot Essent Fatty Acids (PLEFA) 88(1): 5–13. Doi: 10.1016/j.plefa.2012.08.005. PMID: 23206328). We wish to extend this principle to a concept of brain function in learning, recall, perception and cognition.

ChemInform ◽  
2009 ◽  
Vol 40 (26) ◽  
Author(s):  
Keiju Motohashi ◽  
Yui Yamamoto ◽  
Norifumi Shioda ◽  
Hisatake Kondo ◽  
Yuji Owada ◽  
...  

1987 ◽  
Vol 252 (6) ◽  
pp. H1183-H1191
Author(s):  
C. Iadecola ◽  
P. M. Lacombe ◽  
M. D. Underwood ◽  
T. Ishitsuka ◽  
D. J. Reis

We studied whether adrenal medullary catecholamines (CAs) contribute to the metabolically linked increase in regional cerebral blood flow (rCBF) elicited by electrical stimulation of the dorsal medullary reticular formation (DMRF). Rats were anesthetized (alpha-chloralose, 30 mg/kg), paralyzed, and artificially ventilated. The DMRF was electrically stimulated with intermittent trains of pulses through microelectrodes stereotaxically implanted. Blood gases were controlled and, during stimulation, arterial pressure was maintained within the autoregulated range for rCBF. rCBF and blood-brain barrier (BBB) permeability were determined in homogenates of brain regions by using [14C]iodoantipyrine and alpha-aminoisobutyric acid (AIB), respectively, as tracers. Plasma CAs (epinephrine and norepinephrine) were measured radioenzymatically. DMRF stimulation increased rCBF throughout the brain (n = 5; P less than 0.01, analysis of variance) and elevated plasma CAs substantially (n = 4). Acute bilateral adrenalectomy abolished the increase in plasma epinephrine (n = 4), reduced the increases in flow (n = 6) in cerebral cortex (P less than 0.05), and abolished them elsewhere in brain (P greater than 0.05). Comparable effects on rCBF were obtained by selective adrenal demedullation (n = 7) or pretreatment with propranolol (1.5 mg/kg iv) (n = 5). DMRF stimulation did not increase the permeability of the BBB to AIB (n = 5). We conclude that the increases in rCBF elicited from the DMRF has two components, one dependent on, and the other independent of CAs. Since the BBB is impermeable to CAs and DMRF stimulation fails to open the BBB, the results suggest that DMRF stimulation allows, through a mechanism not yet determined, circulating CAs to act on brain and affect brain function.


2004 ◽  
Vol 14 (02) ◽  
pp. 453-491 ◽  
Author(s):  
EROL BAŞAR ◽  
MURAT ÖZGÖREN ◽  
SIREL KARAKAŞ ◽  
CANAN BAŞAR-EROĞLU

The present report describes the dynamic foundations of long-standing experimental work in the field of oscillatory dynamics in the human and animal brain. It aims to show the role of multiple oscillations in the integrative brain function, memory, and complex perception by a recently introduced conceptional framework: the super-synergy in the whole brain. Results of recent experiments related to the percept of the grandmother-face support our concept of super-synergy in the whole brain in order to explain manifestation of Gestalts and Memory-Stages. This report may also provide new research avenues in macrodynamics of the brain.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1382
Author(s):  
Fabien Pifferi ◽  
Stephen C. Cunnane ◽  
Philippe Guesnet

In mammals, brain function, particularly neuronal activity, has high energy needs. When glucose is supplemented by alternative oxidative substrates under different physiological conditions, these fuels do not fully replace the functions fulfilled by glucose. Thus, it is of major importance that the brain is almost continuously supplied with glucose from the circulation. Numerous studies describe the decrease in brain glucose metabolism during healthy or pathological ageing, but little is known about the mechanisms that cause such impairment. Although it appears difficult to determine the exact role of brain glucose hypometabolism during healthy ageing or during age-related neurodegenerative diseases such as Alzheimer’s disease, uninterrupted glucose supply to the brain is still of major importance for proper brain function. Interestingly, a body of evidence suggests that dietary n-3 polyunsaturated fatty acids (PUFAs) might play significant roles in brain glucose regulation. Thus, the goal of the present review is to summarize this evidence and address the role of n-3 PUFAs in brain energy metabolism. Taken together, these data suggest that ensuring an adequate dietary supply of n-3 PUFAs could constitute an essential aspect of a promising strategy to promote optimal brain function during both healthy and pathological ageing.


Author(s):  
Zhong-wei Zhang

ABSTRACT:The mammalian neocortex is the largest structure in the brain, and plays a key role in brain function. A critical period for the development of the neocortex is the early postnatal life, when the majority of synapses are formed and when much of synaptic remodeling takes place. Early studies suggest that initial synaptic connections lack precision, and this rudimentary wiring pattern is refined by experience-related activity through selective elimination and consolidation. This view has been challenged by recent studies revealing the presence of a relatively precise pattern of connections before the onset of sensory experience. The recent data support a model in which specificity of neuronal connections is largely determined by genetic factors. Spontaneous activity is required for the formation of neural circuits, but whether it plays an instructive role is still controversial. Neurotransmitters including acetylcholine, serotonin, and γ-Aminobutyric acid (GABA) may have key roles in the regulation of spontaneous activity, and in the maturation of synapses in the developing brain.


Author(s):  
Sevasti Kapsi ◽  
Spyridoula Katsantoni ◽  
Athanasios Drigas

<p>There are many interventions which may enhance learning. Many techniques are used in education to empower memory, which is a basic cognitive ability to ensure learning. A question arises:  if learning is a natural process, is there a natural mechanism which supports learning? In this review, it is supported that sleep is such a mechanism. Research results on sleep and learning are presented and support different effects on the brain and learning, according to the age of the population. Sleep is a fundamental process for brain function and cognition. More studies should follow to make good use of this information, so as to design new interventions for the field of education.</p>


2020 ◽  
pp. 151-159
Author(s):  
Dmitry Vadimovich Bakharev

This article represents a brief overview of the teaching of Austrian medical scholar and natural scientist Franz Joseph Gall (1758-1828) on human anthropology and psychology. Soviet science viewed Gall as a creator of pseudoscience of phrenology, although in prerevolutionary period, he received mostly complimentary assessment. For example, the prominent Russian criminalist D. A. Dril called Gall a &ldquo;father of criminal anthropology&rdquo;. In order to determine the objectivity of such assessments, the author attempted to distill the essence of Gall&rsquo;s doctrine and assess his conclusions regarding the formation of such branch of criminology as criminal anthropology. The research methodology is based on the analysis of monograph works of F. J. Gall and subsequent summarization of the key theses of psychophysiological doctrine of Austrian scholar. In his works, Gall substantiated the ides that the moral qualities and intellectual abilities are innate, and their manifestation depends on the organization of the brain, which is the organ of all propensities and aptitudes. In his opinion, different parts of brain are responsible for completely different functions. The author concludes that the widespread in Soviet science interpretation of the role of Gall in the area of phrenology is inadequate to reality. Firstly, Gall never attributed any special merits to himself pertaining to studying connection between the form of human skull and peculiarities of his psyche and intellect; and secondly, not disputing the existence of such connection, he however, did not establish any strong patterns.


2006 ◽  
Vol 19 (1) ◽  
pp. 12-34
Author(s):  
Peter Asaro

This article examines the construction of electronic brain models in the 1940s as an instance of “working models” in science. It argues that the best way to understand the scientific role of these synthetic brains is through combining aspects of the “models as mediators” approach (Morgan and Morrison, 1999) and the “synthetic method” (Cordeschi, 2002). Taken together these approaches allow a fuller understanding of how working models functioned within the brain sciences of the time. This combined approach to understanding models is applied to an investigation of two electronic brains built in the late 1940s, the Homeostat of W. Ross Ashby, and the Tortoise of W. Grey Walter. It also examines the writings of Ashby, a psychiatrist and leading proponent of the synthetic brain models, and Walter, a brain electro-physiologist, and their ideas on the pragmatic values of such models. I conclude that rather than mere toys or publicity stunts, these electronic brains are best understood by considering the roles they played as mediators between disparate theories of brain function and animal behavior, and their combined metaphorical and material power.


Sign in / Sign up

Export Citation Format

Share Document