scholarly journals A comparative study on quality parameters of pumpkin, melon and sunflower oils during thermal treatment

OCL ◽  
2019 ◽  
Vol 26 ◽  
pp. 32 ◽  
Author(s):  
Zhana Petkova ◽  
Ginka Antova

Current paper reveals the impact of thermal treatment on the quality of two seed oils – pumpkin and melon compared to the quality of the most used oil – sunflower oil. Conventional and microwave heating were used for processing the oils. The duration of the thermal treatment was 9, 12 and 18 min for the conventional heating. The microwave heating was performed with two microwave powers of the equipment (600 W and 900 W) for 3, 6, 9 and 12 min. At every stage of the thermal processing were determined acid and peroxide value, the absorbance of the oils at 232 and 268 nm, tocopherol and fatty acid composition. It was observed that the degree of oxidation of the examined oils during microwave and conventional heating increased with the duration of the thermal process and the power of the microwaves. Also, the two methods of heating had a little impact on the processes leading to the formation of free fatty acids. Total tocopherols of the melon seed oil were more stable to thermal treatment. The amount of linoleic acid decreased in the pumpkin and sunflower oils during microwave treatment, while that of oleic and palmitic acid relatively increased. The biggest change in the fatty acid composition of both oils was found during microwave heating at 900W. The changes in fatty acid composition of thermally treated melon seed oil were insignificant. Overall, melon seed oil was observed to be more thermally stable than pumpkin and sunflower oils.

2008 ◽  
Vol 8 (4) ◽  
pp. 814-817 ◽  
Author(s):  
O.M. Oluba ◽  
Y.R. Ogunlowo ◽  
G.C. Ojieh ◽  
K.E. Adebisi ◽  
G.O. Eidangbe ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Mohammad Agha Mohammad Reza ◽  
Farzad Paknejad ◽  
Amir Hossein Shirani Rad ◽  
Mohammad Reza Ardakani ◽  
Ali Kashani

1996 ◽  
Vol 31 (4) ◽  
pp. 518-518
Author(s):  
A. I. Rezvukin ◽  
I. Yu Berezovikova ◽  
I. Ya Shalaurova ◽  
Yu. P. Nikitin

2020 ◽  
Vol 104 (5) ◽  
pp. 1410-1422
Author(s):  
Shan Tang ◽  
Dong‐Xu Liu ◽  
Shaoping Lu ◽  
Liangqian Yu ◽  
Yuqing Li ◽  
...  

2021 ◽  
Vol 46 (2) ◽  
Author(s):  
C.O. Ajenu ◽  
M.E. Ukhun ◽  
C. Imoisi ◽  
E.E. Imhontu ◽  
L.E. Irede ◽  
...  

The physical value of oil depends upon its chemical composition, even today these values play a vital role while using different oil for industrial products and also, despite the vast nutritional and medicinal significance of egusi melon, there are little details on the shell life and stability of its oil over time. Therefore, the influence of time and temperature on melon seed oil was investigated at temperatures of 0oC and 30oC at different weeks to ascertain its physicochemical value and storage stability. For week zero, at 0oC and ambient temperature (30oC), the result revealed iodine value 124.09, Acid value 3.64 mgNaOH/g, Free Fatty Acid value 1.84 mgNaOH/g, Saponification 217.35 mgKOH/g, Peroxide value 1.25 mg/g oil, pH 5.89 and thiobarbituric acid value 0.1383 respectively. In the 5th week, at 30oC, the result revealed iodine value 91.1543, acid value 12.8921 mgNaOH/g, free fatty acid value 6.4988 mgNaOH/g, Saponification 346.42 mgKOH/g, Peroxide value 9.5mg/g oil, pH 3.2 and thiobarbituric acid value 0.413 respectively. Also at 0oC in the 5th week, the results were observed as follow: Iodine value 102.53, Acid value 7.96 mgNaOH/g, Free Fatty Acid value 4.01 mgNaOH/g, saponification 287.51 mgKOH/g, Peroxide value 6.1 mg/g oil, pH 5.05, and thiobarbituric acid value 0.2658 respectively. Refrigeration (0oC) of oil reduced the rate of most of the oxidative deterioration that produces rancidity. These values are within recommended range for edible oils. These results indicate that egusi melon oil could be a good source of table oil. The statistical results show that there was a significant difference between the melon seed oil stored at 0oC and 30oC (P < 0.001).


Author(s):  
Syamsul RAHMAN ◽  
Salengke Salengke ◽  
Abu Bakar TAWALI ◽  
Meta MAHENDRADATTA

Palado (Aglaia sp) is a plant that grows wild in the forest around Mamuju regency of West Sulawesi, Indonesia. This plant is locally known as palado. Palado seeds (Aglaia sp) can be used as a source of vegetable oil because it contains approximately 14.75 % oil, and it has the potential to be used as food ingredients or as raw material for oil production. The purpose of this study was to determine the chemical properties and the composition of fatty acids contained in palado seed oil (Aglaia sp). The employed method involved the use of palado fruit that had been processed to be palado seed and undergoing flouring process. Palado flour was produced by the extraction process by using chloroform solvent with the soxhlet method. The characteristics of the chemical properties in the oil produced were analyzed by using a standard method, including iodine, saponification, and acid values. The analysis of fatty acid composition was conducted by using gas chromatography. The results showed that palado oil extracted with hexane had an iodine value of 15.38 mg/g, saponification value of 190.01 mg KOH/g, and acids value of 1.961 mg KOH/g. The fatty acid composition of the palado seed oil consisted of saturated fatty acids (41.601 %), which included palmitic acid (41.062 %), myristic acid (0.539 %), and unsaturated fatty acids (45.949 %), which included mono-unsaturated fatty acids (MUFA) such as (22.929 %), oleic acid and poly-unsaturated fatty acids (PUFA), which was linoleic acid (23.020 %).


2021 ◽  
Vol 72 (3) ◽  
pp. e415 ◽  
Author(s):  
M. De Wit ◽  
V.K. Motsamai ◽  
A. Hugo

Cold-pressed seed oil from twelve commercially produced cactus pear cultivars was assessed for oil yield, fatty acid composition, physicochemical properties, quality and stability. Large differences in oil content, fatty acid composition and physicochemical properties (IV, PV, RI, tocopherols, ORAC, % FFA, OSI and induction time) were observed. Oil content ranged between 2.51% and 5.96% (Meyers and American Giant). The important fatty acids detected were C16:0, C18:0, C18:1c9 and C18:2c9,12, with C18:2c9,12, the dominating fatty acid, ranging from 58.56-65.73%, followed by C18:1c9, ranging between 13.18-16.07%, C16:0, which ranged between 10.97 - 15.07% and C18:0, which ranged between 2.62-3.18%. Other fatty acids such as C14:0, C16:1c9, C17:0, C17:1c10, C20:0, C18:3c9,12,15 and C20:3c8,11,14 were detected in small amounts. The quality parameters of the oils were strongly influenced by oil content, fatty acid composition and physicochemical properties. Oil content, PV, % FFA, RI, IV, tocopherols, ORAC and ρ-anisidine value were negatively correlated with OSI. C18:0; C18:1c9; C18:2c9,12; MUFA; PUFA; n-6 and PUFA/SFA were also negatively correlated with OSI. Among all the cultivars, American Giant was identified as the paramount cultivar with good quality traits (oil content and oxidative stability).


Sign in / Sign up

Export Citation Format

Share Document