scholarly journals Chemical Properties and Fatty Acid Composition of Palado Seed Oil (Aglaia sp) Extracted Using Chloroform Solvent

Author(s):  
Syamsul RAHMAN ◽  
Salengke Salengke ◽  
Abu Bakar TAWALI ◽  
Meta MAHENDRADATTA

Palado (Aglaia sp) is a plant that grows wild in the forest around Mamuju regency of West Sulawesi, Indonesia. This plant is locally known as palado. Palado seeds (Aglaia sp) can be used as a source of vegetable oil because it contains approximately 14.75 % oil, and it has the potential to be used as food ingredients or as raw material for oil production. The purpose of this study was to determine the chemical properties and the composition of fatty acids contained in palado seed oil (Aglaia sp). The employed method involved the use of palado fruit that had been processed to be palado seed and undergoing flouring process. Palado flour was produced by the extraction process by using chloroform solvent with the soxhlet method. The characteristics of the chemical properties in the oil produced were analyzed by using a standard method, including iodine, saponification, and acid values. The analysis of fatty acid composition was conducted by using gas chromatography. The results showed that palado oil extracted with hexane had an iodine value of 15.38 mg/g, saponification value of 190.01 mg KOH/g, and acids value of 1.961 mg KOH/g. The fatty acid composition of the palado seed oil consisted of saturated fatty acids (41.601 %), which included palmitic acid (41.062 %), myristic acid (0.539 %), and unsaturated fatty acids (45.949 %), which included mono-unsaturated fatty acids (MUFA) such as (22.929 %), oleic acid and poly-unsaturated fatty acids (PUFA), which was linoleic acid (23.020 %).

2020 ◽  
Vol 82 (6) ◽  
pp. 71-78
Author(s):  
Zita Letviany Sarungallo ◽  
Budi Santoso ◽  
Risma Uli Situngkir ◽  
Mathelda Kurniaty Roreng ◽  
Meike Meilan Lisangan

Refining of crude red fruit oil (CRFO) through the degumming and neutralization steps intended to produce oil free of impurities (non triglycerides) such as phospholipids, proteins, residues and carbohydrates, and also reducing the amount of free fatty acids (FFA). This study aims to determine the effect of red fruit oil purification through degumming and neutralization stages on chemical properties, fatty acid composition, carotenoid content and tocopherol of red fruit oil (RFO). The results showed that degumming of CRFO did not affect the decrease in water content, FFA levels, peroxide numbers, iodine values, carotenoids and tocopherols content; but decrease in levels of phosphorus, β-carotene and α-tocopherol. Neutralization of degummed-RFO (DRFO) did not affect the decrease in water content, iodine value, carotenoid, tocopherol and α-tocopherol; but the FFA levels, peroxide number, phosphorus and β-carotene levels decreased significantly. The fatty acid composition of RFO was dominated by unsaturated fatty acids (± 75%), which increases through degumming and neutralization stages. β-carotene is more sensitive than α-tocopherol during refining process of crude oil, but in general, this process can improve the RFO quality.


2011 ◽  
Vol 23 (No. 4) ◽  
pp. 166-172 ◽  
Author(s):  
O. Kinik ◽  
O. Gursoy ◽  
A.K. Seckin

Cholesterol content and fatty acid composition of 29 different most popular hard (Tulum, Teneke Tulum, aged Kashar, and fresh Kashar cheeses) and soft cheese (White Pickled cheeses) samples from the markets ofIzmirinTurkeywere determined by gas chromatography. Cholesterol content of hard and soft cheeses ranged from 46.47 to 138.99 mg/100 g fat. Relative to the mean cholesterol values, the highest cholesterol content was found in fresh Kashar cheese. The fatty acid composition is quite similar in all samples. As concerns the saturated fatty acids, the most abundant in the cheeses investigated were palmitic (C16:0), stearic (C18:0), and myristic acids (C14:0). Palmitic acid levels were found to be the highest of the saturated fatty acid in all samples. Oleic acid content (5.93–29.38 mg/100 g fatty acids) in all cheeses was considerable higher than those of other unsaturated fatty acids. No specific trend or correlation between cholesterol and individual fatty acids was observed.  


2012 ◽  
Vol 554-556 ◽  
pp. 905-908 ◽  
Author(s):  
Su Xi Wu ◽  
Rui Xin Liu ◽  
Hui Li

In order to confirm the substitutability of palm oil for lard, the fatty acid composition and their distribution at the Sn-2 position of triglycerides in three kinds of palm oil products and five kinds of lard products were investigated. The results obtained were as follows. Palm oil has similar saturated fatty acids composition (C16:0, C18:0, C18:1, C18:2) with lard, and has slightly lower unsaturated fatty acids content than lard. The Sn-2 position of palm oil is mainly distributed with unsaturated fatty acids (C18:1, C18:2), while the Sn-2 position of lard is mainly distributed with saturated fatty acids (C16:0, C18:0), which is maybe the cause why palm oil is easier to be digested and absorbed than lard.


1973 ◽  
Vol 17 (3) ◽  
pp. 281-285 ◽  
Author(s):  
J. D. Wood

SUMMARYThe fatty acid composition of backfat from Pietrain and Large White pigs was examined. Both the inner and outer layers of Pietrain backfat had higher concentrations of unsaturated fatty acids and lower concentrations of saturated fatty acids. Pietrains consequently had relatively soft fat.A pair-feeding experiment was conducted with Large White and Pietrain pigs to determine whether these differences could be explained by the lower voluntary feed intake of Pietrains. The results showed that the Large Whites continued to accumulate relatively saturated fatty acids even at the lower level of feeding. It was concluded that the differences in the fatty acid composition of backfat reflect genetic differences in the capacity for fat deposition between the two breeds.


Author(s):  
Jie Li, Zai-Hua Wang

Wild Paeonia ludlowii is considered as a traditional ornamental plant, but its flowers and seed oils are edible with important economic values, and the variation of nutrients, fatty acid composition in wild populations is scarcely known. Flowers and seeds of P. ludlowii were collected from two wild populations for evaluating the nutrients in flowers, composition of fatty acids in seed oils and the antioxidant activity. The flowers contained high composition of proteins, carbohydrates, amino acids, total flavonoids, phenolic compounds and essential minerals. Seed oil yield reached up to 21.95% using supercritical CO2 fluid extraction, and it contained 14 fatty acids (up to 93.35 g/100g seed oil), especially the unsaturated fatty acids (oleic acid, linoleic acid and α-linolenic acid) was up to 88.69% with low ω6/ω3 ratios of 0.58. The antioxidant capacity can be arranged in the order of trolox > flower extracts > seed oil according to the DPPH and ABTS free radical assay. Contents of nutrient in flowers and fatty acids in seed oils were significantly different between two wild populations due to the impact of different growing environments. These results indicate that flowers and seed oils of P. ludlowii are potential food resources in human diets.


2010 ◽  
pp. 89-92
Author(s):  
Melinda-Rita Márton ◽  
Sándor Szép ◽  
Zsolt Mándoki ◽  
Melinda Tamás ◽  
Salamon Rozália Veronika ◽  
...  

During our research we studied the fat content and fatty acid composition during the germination and sprouting periods of the most important sprouts: wheat, lentil, alfalfa, radish and sunflower seed. In this article we present our research results during this sprouting study. The concentration of the saturated fatty acids (palmitic acid, stearic acid) decreased, the concentration of the unsaturated fatty acids increased during germination, but the tendency was not so high than was published in the literature.


2014 ◽  
Vol 139 (4) ◽  
pp. 433-441 ◽  
Author(s):  
Geoffrey Meru ◽  
Cecilia McGregor

Seed oil percentage (SOP) and fatty acid composition of watermelon (Citrullus lanatus) seeds are important traits in Africa, the Middle East, and Asia where the seeds provide a significant source of nutrition and income. Oil yield from watermelon seed exceeds 50% (w/w) and is high in unsaturated fatty acids, a profile comparable to that of sunflower (Helianthus annuus) and soybean (Glycine max) oil. As a result of novel non-food uses of plant-derived oils, there is an increasing need for more sources of vegetable oil. To improve the nutritive value of watermelon seed and position watermelon as a potential oil crop, it is critical to understand the genetic factors associated with SOP and fatty acid composition. Although the fatty acid composition of watermelon seed is well documented, the underlying genetic basis has not yet been studied. Therefore, the current study aimed to elucidate the quality of watermelon seed oil and identify genomic regions and candidate genes associated with fatty acid composition. Seed from an F2 population developed from a cross between an egusi type (PI 560023), known for its high SOP, and Strain II (PI 279261) was phenotyped for palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), and linoleic acid (18:2). Significant (P < 0.05) correlations were found between palmitic and oleic acid (0.24), palmitic and linoleic acid (–0.37), stearic and linoleic acid (–0.21), and oleic and linoleic acid (–0.92). A total of eight quantitative trait loci (QTL) were associated with fatty acid composition with a QTL for oleic and linoleic acid colocalizing on chromosome (Chr) 6. Eighty genes involved in fatty biosynthesis including those modulating the ratio of saturated and unsaturated fatty acids were identified from the functionally annotated genes on the watermelon draft genome. Several fatty acid biosynthesis genes were found within and in close proximity to the QTL identified in this study. A gene (Cla013264) homolog to fatty acid elongase (FAE) was found within the 1.5-likelihood-odds (LOD) interval of the QTL for palmitic acid (R2 = 7.6%) on Chr 2, whereas Cla008157, a homolog to omega-3-fatty acid desaturase and Cla008263, a homolog to FAE, were identified within the 1.5-LOD interval of the QTL for palmitic acid (R2 = 24.7%) on Chr 3. In addition, the QTL for palmitic acid on Chr 3 was located ≈0.60 Mbp from Cla002633, a gene homolog to fatty acyl- [acyl carrier protein (ACP)] thioesterase B. A gene (Cla009335) homolog to ACP was found within the flanking markers of the QTL for oleic acid (R2 = 17.9%) and linoleic acid (R2 = 21.5%) on Chr 6, whereas Cla010780, a gene homolog to acyl-ACP desaturase was located within the QTL for stearic acid (R2 = 10.2%) on Chr 7. On Chr 8, another gene (Cla013862) homolog to acyl-ACP desaturase was found within the 1.5-LOD interval of the QTL for oleic acid (R2 = 13.5%). The genes identified in this study are possible candidates for the development of functional markers for application in marker-assisted selection for fatty acid composition in watermelon seed. To the best of our knowledge, this is the first study that aimed to elucidate genetic control of the fatty acid composition of watermelon seed.


Pharmacia ◽  
2020 ◽  
Vol 67 (3) ◽  
pp. 153-159
Author(s):  
Alona Savych ◽  
Svetlana Marchyshyn ◽  
Roksolana Basaraba

It was determined the qualitative composition and the quantitative content of fatty acids in the herbal antidiabetic collection № 3, № 4, № 7, № 13, № 19, which are used in folk medicine for prevention and treatment of diabetes mellitus type 2 in Ukraine by GC/MS method. According to the results it was identified 8 fatty acids in the herbal antidiabetic collection № 3, 13 fatty acids in the herbal antidiabetic collection № 4, 12 fatty acids in the herbal antidiabetic collection № 7, 13 fatty acids in the herbal antidiabetic collection № 13 and 11 fatty acids in the herbal antidiabetic collection № 19. The saturated fatty acids were found to be dominated in the raw plant material. The results of the quantitative research showed that the herbal antidiabetic collection № 3 contains 16.13 mg/g of fatty acids, the herbal antidiabetic collection № 4 – 27.17 mg/g, the herbal antidiabetic collection № 7 – 31.98 mg/g, the herbal antidiabetic collection № 13 – 27.37 mg/g, the herbal antidiabetic collection № 19 – 18.79 mg/g. The GC/MS analysis of the fatty acid composition in the herbal antidiabetic collections has shown that this raw material has a lot of fatty acids, which can have a positive effect for the treatment and prevention of diabetes mellitus type 2.


Microbiology ◽  
2014 ◽  
Vol 160 (12) ◽  
pp. 2618-2626 ◽  
Author(s):  
Romina Marisa Heredia ◽  
Paola Sabrina Boeris ◽  
María Alicia Biasutti ◽  
Gastón Alberto López ◽  
Natalia Soledad Paulucci ◽  
...  

The present study assessed the role of membrane components of Pseudomonas putida A (ATCC 12633) under chemical stress conditions originated by treatment with tetradecyltrimethylammonium bromide (TTAB), a cationic surfactant. We examined changes in fatty acid composition and in the fluidity of the membranes of cells exposed to TTAB at a specific point of growth as well as of cells growing with TTAB. The addition of 10–50 mg TTAB l−1 promoted an increase in the saturated/unsaturated fatty acid ratio. By using fluorescence polarization techniques, we found that TTAB exerted a fluidizing effect on P. putida A (ATCC 12633) membranes. However, a complete reversal of induced membrane fluidification was detected after 15 min of incubation with TTAB. Consistently, the proportion of unsaturated fatty acids was lower in TTAB-treated cells as compared with non-treated cells. In the presence of TTAB, the content of phosphatidylglycerol increased (120 %), whilst that of cardiolipin decreased (60 %). Analysis of the fatty acid composition of P. putida A (ATCC 12633) showed that phosphatidylglycerol carried the major proportion of saturated fatty acids (89 %), whilst cardiolipin carried an elevated proportion of unsaturated fatty acids (18 %). The increase in phosphatidylglycerol and consequently in saturated fatty acids, together with a decrease in cardiolipin content, enabled greater membrane resistance, reversing the fluidizing effect of TTAB. Therefore, results obtained in the present study point to changes in the fatty acid profile as an adaptive response of P. putida A (ATCC 12633) cells to stress caused by a cationic surfactant.


1979 ◽  
Vol 42 (1) ◽  
pp. 57-61 ◽  
Author(s):  
Ph. G. Pittet ◽  
D. Halliday ◽  
P. E. Bateman

1. Adipose tissue samples were obtained by needle biopsy from three subcutaneous sites (thigh, abdomen and upper arm) in twenty-two obese women. The fatty acid composition was determined using gas-liquid chromatography and the results presented relate to eleven component fatty acids.2. The fatty acid composition of adipose tissue obtained from the arm and abdomen was remarkably similar, with the exception of the levels of lauric acid.3. The analyses showed that the majority of the saturated fatty acids were present in smaller proportions whilist the majority of unsaturated fatty acids were present in larger proportions in the thigh than in the two other sites. Highly significant inter-site differences were demonstrated for six of the major fatty acids and also for both the total amounts of saturated and unsaturated fatty acids and their ratios.4. No marked differences in the fatty acid composition of adipose tissue from obese subjects were revealed during this study when compared with previously reported results obtained from ‘normal-weight’ subjects.


Sign in / Sign up

Export Citation Format

Share Document