scholarly journals Evaluation of Anti-inflammatory, Anti-pyretic, Analgesic, and Hepatoprotective Properties of Terminalia macroptera

2020 ◽  
Vol 07 (02) ◽  
pp. e58-e67
Author(s):  
Mahamane Haïdara ◽  
Adama Dénou ◽  
Mohamed Haddad ◽  
Aïssata Camara ◽  
Korotoumou Traoré ◽  
...  

AbstractIn Mali, improved traditional medicines [“Médicaments Traditionnels Améliorés”] are prepared from traditionally used medicinal plants. Recently, the Department of Traditional Medicine has identified Terminalia macroptera Guill. & Perr. (Combretaceae) as a potential candidate for an improved traditional medicine. T. macroptera is a West African medicinal plant used in Mali against various health disorders, with more than 30 different indications mentioned by traditional healers, including hepatitis, gonorrhea, fever, pain relief, and various infectious diseases (Helicobacter pylori-associated diseases). To date, validation of most of the biological activities of has been mainly carried out in vitro, except for antimalarial activities. In this study, the potential anti-inflammatory, antipyretic, analgesic, and hepatoprotective properties of T. macroptera were investigated in different murine models. Administration of T. macroptera ethanolic root and leaf extracts in rats significantly reduced pyrexia, pain, inflammation, and hepatic marker enzymes such as alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase in the different murine models used (p<0.05). A phytochemical screening of T. macroptera revealed the presence of tannins, flavonoids, saponins, anthracene derivatives, sterols, triterpenes, and sugars in both leaf and root extracts as the main phytochemical compounds. This was confirmed by qualitative analysis, liquid chromatography coupled with high-resolution mass spectrometry. T. macroptera extracts demonstrated interesting in vivo antipyretic, analgesic, anti-inflammatory, and hepatoprotective activities. Therefore, T. macroptera should be proposed and further evaluated as a potential improved traditional medicine for the treatment of liver-related disorders and for the relief of pain and fever.

2020 ◽  
Vol 11 (3) ◽  
pp. 4760-4766
Author(s):  
Hartati R ◽  
Suarantika F ◽  
Fidrianny I

Ananas comosus L. Merr, known as pineapple, belongs to the Bromeliaceae family. This plant has been used as traditional medicine and continues until now in conventional herbal medicine. The pineapple was distributed in some countries such as China, India, Indonesia, Malaysia, Thailand and originated from South America. This article delved the scientific work about Ananas comosus focussing their usage as traditional medicine, chemical compounds and biological activities. All of the pieces of information were obtained from the scientific literature such as Science Direct, Google Scholar, Scopus and PubMed. Based on the literature survey,different parts of pineapple (Ananas comosus) are used in traditional medicine, used asan anti-inflammatory agent,anti-oedema, digestive disorder, antimicrobial, vermicide, and purgative. Phytochemical compounds from A. comosus have been provided, including ascorbic acid, quercetin, flavones-3-ol, flavones, and ferulic acid. The crude extracts of A. comosus have many pharmacological activities such as anti-fungal, anti-inflammatory, antioxidant, antibacterial. This discovery becomes possible due to scientific isolation and in vivo or in vitro analysis of A.comosus.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4826
Author(s):  
Samar Rezq ◽  
Mona F. Mahmoud ◽  
Assem M. El-Shazly ◽  
Mohamed A. El Raey ◽  
Mansour Sobeh

Natural antioxidants, especially those of plant origins, have shown a plethora of biological activities with substantial economic value, as they can be extracted from agro-wastes and/or under exploited plant species. The perennial hydrophyte, Potamogeton perfoliatus, has been used traditionally to treat several health disorders; however, little is known about its biological and its medicinal effects. Here, we used an integrated in vitro and in vivo framework to examine the potential effect of P. perfoliatus on oxidative stress, nociception, inflammatory models, and brewer’s yeast-induced pyrexia in mice. Our results suggested a consistent in vitro inhibition of three enzymes, namely 5-lipoxygenase, cyclooxygenases 1 and 2 (COX-1 and COX-2), as well as a potent antioxidant effect. These results were confirmed in vivo where the studied extract attenuated carrageenan-induced paw edema, carrageenan-induced leukocyte migration into the peritoneal cavity by 25, 44 and 64% at 200, 400 and 600 mg/kg, p.o., respectively. Moreover, the extract decreased acetic acid-induced vascular permeability by 45% at 600 mg/kg, p.o., and chemical hyperalgesia in mice by 86% by 400 mg/kg, p.o., in acetic acid-induced writhing assay. The extract (400 mg/kg) showed a longer response latency at the 3 h time point (2.5 fold of the control) similar to the nalbuphine, the standard opioid analgesic. Additionally, pronounced antipyretic effects were observed at 600 mg/kg, comparable to paracetamol. Using LC-MS/MS, we identified 15 secondary metabolites that most likely contributed to the obtained biological activities. Altogether, our findings indicate that P. perfoliatus has anti-inflammatory, antioxidant, analgesic and antipyretic effects, thus supporting its traditional use and promoting its valorization as a potential candidate in treating oxidative stress-associated diseases.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1441
Author(s):  
Yangpeng Lu ◽  
Yanan Jia ◽  
Zihan Xue ◽  
Nannan Li ◽  
Junyu Liu ◽  
...  

Inonotus obliquus (Chaga mushroom) is a kind of medicine and health food widely used by folk in China, Russia, Korea, and some occidental countries. Among the extracts from Inonotus obliquus, Inonotus obliquus polysaccharide (IOPS) is supposed to be one of the major bioactive components in Inonotus obliquus, which possesses antitumor, antioxidant, anti-virus, hypoglycemic, and hypolipidemic activities. In this review, the current advancements on extraction, purification, structural characteristics, and biological activities of IOPS were summarized. This review can provide significant insight into the IOPS bioactivities as their in vitro and in vivo data were summarized, and some possible mechanisms were listed. Furthermore, applications of IOPS were reviewed and discussed; IOPS might be a potential candidate for the treatment of cancers and type 2 diabetes. Besides, new perspectives for the future work of IOPS were also proposed.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 991
Author(s):  
Melanie S. Matos ◽  
José D. Anastácio ◽  
Cláudia Nunes dos Santos

Inflammation is a crucial and complex process that reestablishes the physiological state after a noxious stimulus. In pathological conditions the inflammatory state may persist, leading to chronic inflammation and causing tissue damage. Sesquiterpene lactones (SLs) are composed of a large and diverse group of highly bioactive plant secondary metabolites, characterized by a 15-carbon backbone structure. In recent years, the interest in SLs has risen due to their vast array of biological activities beneficial for human health. The anti-inflammatory potential of these compounds results from their ability to target and inhibit various key pro-inflammatory molecules enrolled in diverse inflammatory pathways, and prevent or reduce the inflammatory damage on tissues. Research on the anti-inflammatory mechanisms of SLs has thrived over the last years, and numerous compounds from diverse plants have been studied, using in silico, in vitro, and in vivo assays. Besides their anti-inflammatory potential, their cytotoxicity, structure–activity relationships, and pharmacokinetics have been investigated. This review aims to gather the most relevant results and insights concerning the anti-inflammatory potential of SL-rich extracts and pure SLs, focusing on their effects in different inflammatory pathways and on different molecular players.


2021 ◽  
Vol 18 ◽  
Author(s):  
Nayla Javed ◽  
Shakeel Ijaz ◽  
Naveed Akhtar ◽  
Haji Muhammad Shoaib Khan

Background: Arctostaphylos uva-ursi (AUU) being rich in polyphenols and arbutin is known to have promising biological activities and can be a potential candidate as a cosmaceutical. Ethosomes encourage the formation of lamellar-shaped vesicles with improved solubility and entrapment of many drugs including plant extracts. Objective: The objective of this work was to develop an optimized nanostructured ethosomal gel formulation loaded with AUU extract and evaluated for skin rejuvenation and depigmentation. Methods: AUU extract was tested for phenolic and flavonoid content, radical scavenging potential, reducing power activity, and in-vitro SPF (sun protection factor) estimation. AUU loaded 12 formulations were prepared and characterized by SEM (scanning electron microscopy), vesicular size, zeta potential, and entrapment efficiency (%EE). The optimized formulation was subjected to non-invasive in-vivo investigations after incorporating it into the gel system and ensuring its stability and skin permeation. Results: Ethosomal vesicles were spherical in shape and Zeta size, zeta potential, PDI (polydispersity index), % EE and in-vitro skin permeation of optimized formulation (F3) were found to be 114.7nm, -18.9mV, 0.492, 97.51±0.023%, and 79.88±0.013% respectively. AUU loaded ethosomal gel formulation was stable physicochemically and exhibited non-Newtonian behavior rheologically. Moreover, it significantly reduced skin erythema, melanin as well as sebum level and improved skin hydration and elasticity. Conclusion: A stable AUU based ethosomal gel formulation could be a better vehicle for phytoextracts than conventional formulations for cosmeceutical applications such as for skin rejuvenation and depigmentation etc.


2017 ◽  
Vol 313 (4) ◽  
pp. L710-L721 ◽  
Author(s):  
Yunbo Ke ◽  
Olga V. Oskolkova ◽  
Nicolene Sarich ◽  
Yufeng Tian ◽  
Albert Sitikov ◽  
...  

Prostaglandins (PG), the products of cyclooxygenase-mediated conversion of arachidonic acid, become upregulated in many situations including allergic response, inflammation, and injury, and exhibit a variety of biological activities. Previous studies described barrier-enhancing and anti-inflammatory effects of PGE2 and PGI2 on vascular endothelial cells (EC). Yet, the effects of other PG members on EC barrier and inflammatory activation have not been systematically analyzed. This study compared effects of PGE2, PGI2, PGF2α, PGA2, PGJ2, and PGD2 on human pulmonary EC. EC permeability was assessed by measurements of transendothelial electrical resistance and cell monolayer permeability for FITC-labeled tracer. Anti-inflammatory effects of PGs were evaluated by analysis of expression of adhesion molecule ICAM1 and secretion of soluble ICAM1 and cytokines by EC. PGE2, PGI2, and PGA2 exhibited the most potent barrier-enhancing effects and most efficient attenuation of thrombin-induced EC permeability and contractile response, whereas PGI2 effectively suppressed thrombin-induced permeability but was less efficient in the attenuation of prolonged EC hyperpermeability caused by interleukin-6 or bacterial wall lipopolysaccharide, LPS. PGD2 showed a modest protective effect on the EC inflammatory response, whereas PGF2α and PGJ2 were without effect on agonist-induced EC barrier dysfunction. In vivo, PGE2, PGI2, and PGA2 attenuated LPS-induced lung inflammation, whereas PGF2α and PGJ2 were without effect. Interestingly, PGD2 exhibited a protective effect in the in vivo model of LPS-induced lung injury. This study provides a comprehensive analysis of barrier-protective and anti-inflammatory effects of different prostaglandins on lung EC in vitro and in vivo and identifies PGE2, PGI2, and PGA2 as prostaglandins with the most potent protective properties.


2016 ◽  
Vol 4 (6) ◽  
pp. 319-323
Author(s):  
Narendra K ◽  
DSD Suman Joshi ◽  
M Satya Prasad ◽  
KVN Rathnakar Reddi ◽  
Swathi J ◽  
...  

2020 ◽  
Vol 88 (2) ◽  
pp. 26
Author(s):  
Anca Zanfirescu ◽  
Georgiana Nitulescu ◽  
Gheorghe Stancov ◽  
Denise Radulescu ◽  
Cosmin Trif ◽  
...  

Medicinal plants hold a significant place as alternative treatments available for inflammatory diseases, with many phytoconstituents being frequently tested in vitro for their biological activities. In the current study, we investigated the in vivo anti-inflammatory properties of a novel active gel formulation, combining Achillea millefolium and Taxodium distichum essential oils with extracts of Aesculus hippocastanum seeds and Plantago lanceolata leaves. The toxicity of the obtained extracts and volatile oils was determined using the invertebrate model based on Daphnia magna. Anti-inflammatory potential was evaluated by the plethysmometric method on Wistar rats, expressed as the inhibition of the inflammatory oedema (%IIO), while the antinociceptive response was determined on NMRI mice, according to the tail-flick latency method. The tested gel’s efficacy was similar to the 5% diclofenac standard (maximal %IIO of 42.01% vs. 48.70%, respectively), with the anti-inflammatory effect being observed sooner than for diclofenac. Our active gel also produced a significant prolongation of tail-flick latencies at both 60 and 120 min, comparable to diclofenac. Consequently, we can imply that the active constituents present in vivo anti-inflammatory properties, and the prepared gel may be suited for use as an alternative treatment of topical inflammatory conditions.


Sign in / Sign up

Export Citation Format

Share Document