Characterization of white cabbages from different cultivations by isothiocyanates and antioxidant activities

Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
A Śmiechowska ◽  
B Kusznierewicz ◽  
A Bartoszek ◽  
A Szumska ◽  
A Kawecka ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1375
Author(s):  
María J. Moreno-Vásquez ◽  
Maribel Plascencia-Jatomea ◽  
Saúl Sánchez-Valdes ◽  
Judith C. Tanori-Córdova ◽  
Francisco J. Castillo-Yañez ◽  
...  

Nanoparticles based on chitosan modified with epigallocatechin gallate (EGCG) were synthetized by nanoprecipitation (EGCG-g-chitosan-P). Chitosan was modified by free-radical-induced grafting, which was verified by Fourier transform infrared (FTIR). Furthermore, the morphology, particle size, polydispersity index, and zeta potential of the nanoparticles were investigated. The grafting degree of EGCG, reactive oxygen species (ROS) production, antibacterial and antioxidant activities of EGCG-g-chitosan-P were evaluated and compared with those of pure EGCG and chitosan nanoparticles (Chitosan-P). FTIR results confirmed the modification of the chitosan with EGCG. The EGCG-g-chitosan-P showed spherical shapes and smoother surfaces than those of Chitosan-P. EGCG content of the grafted chitosan nanoparticles was 330 μg/g. Minimal inhibitory concentration (MIC) of EGCG-g-chitosan-P (15.6 μg/mL) was lower than Chitosan-P (31.2 μg/mL) and EGCG (500 μg/mL) against Pseudomonas fluorescens (p < 0.05). Additionally, EGCG-g-chitosan-P and Chitosan-P presented higher Staphylococcus aureus growth inhibition (100%) than EGCG at the lowest concentration tested. The nanoparticles produced an increase of ROS (p < 0.05) in both bacterial species assayed. Furthermore, EGCG-g-chitosan-P exhibited higher antioxidant activity than that of Chitosan-P (p < 0.05) in 2,2′-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and ferric-reducing antioxidant power assays. Based on the above results, EGCG-g-chitosan-P shows the potential for food packaging and biomedical applications.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1295 ◽  
Author(s):  
Sílvia Afonso ◽  
Ivo Vaz Oliveira ◽  
Anne S. Meyer ◽  
Alfredo Aires ◽  
Maria José Saavedra ◽  
...  

Every year, large quantities of stems and pits are generated during sweet cherry processing, without any substantial use. Although stems are widely recognized by traditional medicine, detailed and feasible information about their bioactive composition or biological value is still scarce, as well as the characterization of kernels. Therefore, we conducted a study in which bioactivity potential of extracts from stems and kernels of four sweet cherry cultivars (Early Bigi (grown under net cover (C) and without net cover (NC)), Burlat, Lapins, and Van) were examined. The assays included antioxidant (by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-carotene-linoleic acid bleaching assays), and antibacterial activities against important Gram negative and Gram positive bacterial human isolates. Profile and individual phenolic composition of each extract were determined by High-performance liquid chromatography (HPLC) analysis. Extracts from stems of cv. Lapins and kernels of Early Bigi NC presented high levels of total phenolics, flavonoids, ortho-diphenols and saponins. Excepting for cv. Early Bigi NC, major phenolic compounds identified in stems and kernels were sakuranetin and catechin, respectively. In cv. Early Bigi NC the most abundant compounds were ellagic acid for stems and protocatechuic acid for kernels. In all extracts, antioxidant activities showed a positive correlation with the increments in phenolic compounds. Antimicrobial activity assays showed that only stem’s extracts were capable of inhibiting the growth of Gram positive isolates. This new data is intended to provide new possibilities of valorization of these by-products and their valuable properties.


2016 ◽  
Vol 142 ◽  
pp. 230-239 ◽  
Author(s):  
Shuhong Ye ◽  
Jiajia Zhang ◽  
Zhaofang Liu ◽  
Yu Zhang ◽  
Jiang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document