Antioxidant and antihyperlipidemic activity of Tephrosia purpurea callus culture

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
M Mujeeb ◽  
M Aqil ◽  
AK Najmi ◽  
M Akhtar ◽  
N Ahmad ◽  
...  
Author(s):  
Irfan Aziz ◽  
Birendra Shrivastava ◽  
Chandana Venkateswara Rao ◽  
Sadath Ali

Tephrosia purpurea possesses hepatoprotective activity as evidenced by the significant and dose dependent restoring the activities of entire liver cancer marker enzymes, diminution in tumor incidence, decrease in lipid peroxidation (LPO) and increase in the level of antioxidant enzymes (GSH, CAT, SOD, GPx and GST) through scavenging of free radicals, or by enhancing the activity of antioxidant, which then detoxify free radicals. These factors protect cells from ROS damage in NDEA and CCl4-induced hepatocarcinogenesis. Histopathological observations of liver tissues too correlated with the biochemical observations. Thus, present investigation suggested that the Tephrosia purpurea would exert a chemoprotective effect by reversing the oxidant-antioxidant imbalance during hepatocarcinogenesis induced by NDEA and CCl4. Besides Tephrosia purpurea is very much effective in preventing NDEA-induced multistage hepatocarcinogenesis possibly through antioxidant and antigenotoxic nature, which was confirmed by various liver injury and biochemical tumour markers enzymes. The hepatoprotective activity of aTephrosia purpurea of 50 % ethanolic extract was studied using rats. The animals received a single intraperitoneal injection of N-nitrosodiethylamine 200mg/kg body wt followed by subcutaneous injection of CCl4 in a dose of 3 ml/kg body wt.Tephrosia purpureaextract dose dependently and significantly the increase in serum hepatic enzyme levels after NDEAand CCl4 treatment compared to the toxin control group. The results of this study confirmed the antioxidant and hepatoprotective activity of the Tephrosia purpurea extract against carbon tetrachlorideand N-nitrosodiethylamine induced hepatotoxicity in rats.


2011 ◽  
Vol 37 (5) ◽  
pp. 503-506
Author(s):  
Guan-hua LI ◽  
Shuang-qing LIU ◽  
Yang CAO ◽  
Dong-qiang ZENG ◽  
You-zhi LI

2020 ◽  
Vol 16 (6) ◽  
pp. 937-941
Author(s):  
Sharad Vats ◽  
Preeti Mehra

Background: Vector-borne diseases are quite prevalent globally and are one of the major causes of deaths due to infectious diseases. There is an availability of synthetic insecticides, however, their excessive and indiscriminate use have resulted in the emergence of resistant varieties of insects. Thus, a search for novel biopesticide has become inevitable. Methods: Rotenoids were isolated and identified from different parts of Medicago sativa L. This group of metabolites was also identified in the callus culture, and the rotenoid content was monitored during subculturing for a period of 10 months. Enhancement of the rotenoid content was evaluated by feeding precursors in a tissue culture medium. Results: Four rotenoids (elliptone, deguelin, rotenone and Dehydrorotenone) were identified, which were confirmed using spectral and chromatographic techniques. The maximum rotenoid content was found in the seeds (0.33±0.01%), followed by roots (0.31±0.01%) and minimum in the aerial parts (0.20±0.05%). A gradual decrease in the rotenoid content was observed with the ageing of subcultured tissue maintained for 10 months. The production of rotenoids was enhanced up to 2 folds in the callus culture using amino acids, Phenylalanine and Methionine as precursors as compared to the control. The LC50 value of the rotenoids was found to be 91 ppm and 162 ppm against disease vectors of malaria and Dracunculiasis, respectively. Conclusion: The study projects M. sativa as a novel source of biopesticide against the disease vectors of malaria and Dracunculiasis. The use of precursors to enhance the rotenoid content in vitro can be an effective venture from a commercial point of view.


1990 ◽  
Vol 45 (6) ◽  
pp. 602-606 ◽  
Author(s):  
B. Merkel ◽  
J. Reichling

Abstract Unorganized callus and leaf/root-differentiating callus cultures of Pimpinella major have been established in liquid nutrient medium. Their capacity to accumulate rare phenylpropanoids such as epoxy-pseudoisoeugenol tiglate, epoxy-anol tiglate and anol tiglate was compared with that of seedlings and whole plants. The unorganized callus cultures were not able to accumulate any phenylpropanoids. In comparison, the leaf/root-differentiating callus culture promoted the accumulation of epoxy-pseudoisoeugenol tiglate (up to 90 mg/100 g fr.wt.) but not that of anol-derivatives. The accumulated amount of EPT in PMD-SH was comparable with that in plant seedlings.


Sign in / Sign up

Export Citation Format

Share Document