The Influence of Diet and Nutrients on Platelet Function

2014 ◽  
Vol 40 (02) ◽  
pp. 214-226 ◽  
Author(s):  
Bradley McEwen

Cardiovascular disease (CVD) is the leading cause of death worldwide. Platelet activation and aggregation play an integral role in hemostasis and thrombosis. Diets and nutrients play a potential role in modifying CVD progression, particularly in platelet function, and have the potential of altering platelet function tests. Diets such as Mediterranean diet, high in omega-3 polyunsaturated fatty acids (PUFA), and vegetarian diets have inverse relationships with CVD. Dark chocolate, foods with low glycemic index, garlic, ginger, omega-3 PUFA, onion, purple grape juice, tomato, and wine all reduce platelet aggregation. Dark chocolate and omega-3 PUFA also reduce P-selectin expression. In addition, dark chocolate reduces PAC-1 binding and platelet microparticle formation. Berries inhibit platelet function (PFA-100). Energy drinks have been shown to increase platelet aggregation and caffeine increases platelet microparticle formation. Therefore, repeat testing of platelet function may be required, not only after exclusion of known antiplatelet medications but also potentially after exclusion of dietary substances/nutrients that could have plausibly affected initial test data.

2008 ◽  
Vol 100 (10) ◽  
pp. 634-641 ◽  
Author(s):  
Mark K. Larson ◽  
Joseph H. Ashmore ◽  
Kristina A. Harris ◽  
Jessica L. Vogelaar ◽  
James V. Pottala ◽  
...  

SummaryOmega-3 fatty acids (n-3 FA) from oily fish are clinically useful for lowering triglycerides and reducing risk of heart attacks. Accordingly, patients at risk are often advised to take both aspirin and n-3 FA. However, both of these agents can increase bleeding times, and the extent to which the combination inhibits platelet function is unknown. The purpose of this pilot study was to determine the effects of a prescription omega-3 FA product (P-OM3) and aspirin, alone and in combination, on platelet aggregation assessed by whole blood impedance aggregometry (WBA). Ten healthy volunteers provided blood samples on four separate occasions: Day 1, baseline; Day 2, one day after taking aspirin (2 x 325 mg tablets); Day 29, after 28 days of P-OM3 (4 capsules/day); and Day 30, after one day of combined P-OM3 and aspirin. WBA was tested with two concentrations of collagen, with ADP and with a thrombin receptor activating peptide (TRAP). Compared to baseline, aspirin alone inhibited aggregation only with low-dose collagen stimulation;P-OM3 alone did not inhibit aggregation with any agonist; and combined therapy inhibited aggregation with all agonists butTRAP. Significant interactions between interventions were not observed in response to any agonist. In conclusion, P-OM3 alone did not inhibit platelet aggregation, but did (with two agonists) when combined with aspirin. Since previous studies have not reported a clinically significant risk for bleeding in subjects on combined therapy, P-OM3 may safely enhance the anti-platelet effect of aspirin.


1975 ◽  
Vol 13 (11) ◽  
pp. 41-43

Two preparations of dextran have been tried for prevention of venous thromboembolic disease, dextran-40 (average m. w. 40,000) and dextran-70 (average m.w. 70,000). Dextrans reduce platelet aggregation and lower blood viscosity.1 Dextran may also reduce the peri-operative rise in the coagulation factors V and VIII.2 However, in some tests dextrans increase platelet aggregation3 and accelerate fibrin formation,4 so that only clinical trial can show whether dextran reduces the incidence of either deep-vein thrombosis or of pulmonary embolism.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3898-3898
Author(s):  
Cafer Adiguzel ◽  
Omer Iqbal ◽  
Daniel Fareed ◽  
Debra Hoppensteadt ◽  
Walter Jeske ◽  
...  

Abstract Several recombinant thrombomodulin (r-TM) preparations have been developed for different clinical indications. While the in vitro effects of r-TM on blood coagulation parameters are extensively studied, the effect of this agent on platelet function tests such as the adhesion, aggregation, activation and secretion are not fully explored. The purpose of this study was to investigate the effect of a recombinant version of thrombomodulin (ART 123, Asahi, Pharmaceutical, Japan) on various platelet function tests. Platelet aggregation, platelet release and platelet activation by tissue factor (TF) utilizing flow cytometry studies were carried out. In the platelet aggregation studies, citrated whole blood was supplemented with graded amounts of r-TM, in a concentration range of 0–10 ug/ml in the blood of normal healthy volunteers (n=25). Platelet rich plasma (PRP) was prepared by controlled centrifugation (800g) for 15 minutes. Platelet count in the PRP was adjusted to 250,000/ul and aggregation studies were carried out using ADP (5 and 2.5 uM), and alpha thrombin (0.5 U/ml). Platelet activation studies were carried out using flow cytometric method utilizing citrated whole blood and recombinant TF and ADP as activators. In this procedure whole blood was supplemented with TM in a concentration range of 0–10 ug/ml and incubated. TF was then added and further incubated for an additional 2 minutes. Platelets were fixed and incubated with CD 61 and CD 62 antibodies and analyzed using the flow cytometer. Platelet release assays included the 14C serotonin release (SRA) from the washed platelets. In the platelet aggregation assay r-TM did not produce any significant inhibition of agonist induced aggregation with ADP and epinephrine, however, r-TM produced a strong concentration inhibition of thrombin induced aggregation with an IC 50 of 0.42 ug/ml. In the flow studies, r-TM produced an initial augmentation of the generation of microparticles at concentrations up to 0.31 ug/ml (ranges; 5–20%). However at concentrations > 0.31 ug/ml r-TM produced a concentration dependent inhibition of the microparticle formation with an IC 50 of 2.5 ug/ml. At concentrations of >5.0 ug/ml a complete inhibition of TF mediated microparticle formation was noted. Interestingly, r-TM did not produce any inhibition of the p-selectin expression at all concentrations studied. In the SRA, r-TM did not produce any release at concentrations up to 10 ug/ml. However, r-TM produced a strong inhibition of the alpha thrombin induced SRA release. These studies demonstrate that although in the agonist induced platelet aggregation studies r-TM does not produce any modulation of platelet aggregation responses with the exception of thrombin, in the flow cytometric studies it produces a biophasic response. In a concentration range of 0 - .31 ug/ml it produced a slight augmentation of the TF mediated platelet activation. However, at higher concentrations it produced an inhibition of the platelet microparticle formation. Interestingly, there was no effect of r-TM on p-selectin activation. These studies suggest that although r-TM does not produce any inhibition of the agonist induced aggregation of platelets, it can inhibit the TF mediated microparticle formation. Moreover, since r-TM at concentrations of up to 10 ug/ml does not produce any effect on p-selectin expression. It is unlikely to produce any primary hemostatic compromise in a therapeutic range of 2–6 ug/ml.


2011 ◽  
Vol 17 (6) ◽  
pp. E175-E180 ◽  
Author(s):  
Burak Pamukcu ◽  
Huseyin Oflaz ◽  
Imran Onur ◽  
Arif Cimen ◽  
Yilmaz Nisanci

Background: Cigarette smoking may increase platelet aggregation and cause atherothrombotic cardiovascular events. We aimed to investigate the impact of cigarette smoking on platelet function in patients with ischemic coronary heart disease (CHD).Methods: Twenty patients with ischemic stable CHD under aspirin therapy (300 mg/d), who continue to smoking despite all warnings, and 20 nonsmokers with CHD are enrolled in the study. Platelet function is studied at the morning, before and 15 minutes after the first cigarette, by the Platelet Function Analyzer (PFA)-100, with collagen and epinephrine and collagen and adenosine diphosphate cartridges. Post aspirin platelet hyperactivity is defined as having a closure time (CT) shorter than 186 seconds despite regular aspirin intake. Serial CT measurements are analyzed by paired samples t test.Results: Persistent platelet activity was present in 4 smoker (20%) and 3 nonsmoker (15%) patients at the beginning. Platelet activity measured by the PFA-100 is been increased significantly after cigarette smoking ( P = .004). Shorter CTs were determined after smoking in all patients with and without baseline persistent platelet activity, and 4 more participants became aspirin nonresponder ( P = .004). No significant differences in demographic, hematological, and biochemical parameters were determined between aspirin responders and nonresponders.Conclusions: We determined that cigarette smoking may increase platelet aggregation in patients with ischemic CHD in an aspirin nonresponsive manner. Our results emphasize the importance of quitting cigarette smoking in patients with CHD.


1988 ◽  
Vol 60 (01) ◽  
pp. 083-087 ◽  
Author(s):  
M P Gordge ◽  
R W Faint ◽  
P B Rylance ◽  
G H Neild

SummaryBleeding time and platelet function tests were performed on 31 patients with progressive chronic renal failure (CRF) due to non-immunological (urological) causes, and compared with 22 healthy controls. Patients were classified as mild (plasma creatinine <300 μmol/l), moderate (300-600 μmol/l) or severe renal failure (>600 μmol/l). Bleeding time was rarely prolonged in mild and moderate CRF and mean bleeding time significantly elevated only in severe CRF (p <0.005). Haematocrit was the only index which correlated with bleeding time (r = -0.40). Platelet counts, collagen stimulated thromboxane generation, and platelet aggregation responses to ADP, collagen and ristocetin were all either normal or increased in all three CRF groups, but thromboxane production in clotting blood was reduced. Plasma fibrinogen, C reactive protein and von Willebrand factor (vWF) were elevated in proportion to CRF. We found no evidence that defects in platelet aggregation or platelet interaction with vWF prolong the bleeding time in patients with progressive CRF.


1994 ◽  
Vol 72 (02) ◽  
pp. 244-249 ◽  
Author(s):  
Aura S Kamiguti ◽  
Joseph R Slupsky ◽  
Mirko Zuzel ◽  
Charles R M Hay

SummaryHaemorrhagic metalloproteinases from Bothrops jararaca and other venoms degrade vessel-wall and plasma proteins involved in platelet plug and fibrin clot formation. These enzymes also cause proteolytic digestion of fibrinogen which has been suggested to cause defective platelet function. Fibrinogen degradation by jararhagin, a metalloproteinase from B. jararaca, and the effect of jararhagin fibrinogenolysis on both platelet aggregation and fibrin clot formation were investigated. Jararhagin was found to cleave human fibrinogen in the C-terminal region of the Aα-chain giving rise to a 285-290 kDa fibrinogen molecule lacking the Aα-chain RGD 572-574 platelet-binding site. Platelet binding and aggregation of ADP-activated platelets is unaffected by this modification. This indicates that the lost site is not essential for platelet aggregation, and that the remaining platelet binding sites located in the N-terminal portion of Aα chains (RGD 95-97) and the C-terminal of γ chains (dodecapeptide 400-411) are unaffected by jararhagin-digestion of fibrinogen. Fibrin clot formation with thrombin of this remnant fibrinogen molecule was defective, with poor polymerization of fibrin monomers but normal release of FPA. The abnormal polymerization could be explained by the loss of one of the two complementary polymerization sites required for side-by-side association of fibrin protofibrils. Jararhagin-induced inhibition of platelet function, an important cause of haemorrhage in envenomed patients, is not caused by proteolysis of fibrinogen, as had been thought, and the mechanism remains to be elucidated.


1995 ◽  
Vol 74 (05) ◽  
pp. 1316-1322 ◽  
Author(s):  
Mary Ann McLane ◽  
Jagadeesh Gabbeta ◽  
A Koneti Rao ◽  
Lucia Beviglia ◽  
Robert A Lazarus ◽  
...  

SummaryNaturally-occurring fibrinogen receptor antagonists and platelet aggregation inhibitors that are found in snake venom (disintegrins) and leeches share many common features, including an RGD sequence, high cysteine content, and low molecular weight. There are, however, significant selectivity and potency differences. We compared the effect of three proteins on platelet function: albolabrin, a 7.5 kDa disintegrin, eristostatin, a 5.4 kDa disintegrin in which part of the disintegrin domain is deleted, and decorsin, a 4.5 kDa non-disintegrin derived from the leech Macrobdella decora, which has very little sequence similarity with either disintegrin. Decorsin was about two times less potent than albolabrin and six times less potent than eristostatin in inhibiting ADP- induced human platelet aggregation. It had a different pattern of interaction with glycoprotein IIb/IIIa as compared to the two disintegrins. Decorsin bound with a low affinity to resting platelets (409 nM) and to ADP-activated platelets (270 nM), and with high affinity to thrombin- activated platelets (74 nM). At concentrations up to 685 nM, it did not cause expression of a ligand-induced binding site epitope on the (β3 subunit of the GPIIb/IIIa complex. It did not significantly inhibit isolated GPIIb/IIIa binding to immobilized von Willebrand Factor. At low doses (1.5-3.0 μg/mouse), decorsin protected mice against death from pulmonary thromboembolism, showing an effect similar to eristostatin. This suggested that decorsin is a much more potent inhibitor of platelet aggregation in vivo than in vitro, and it may have potential as an antiplatelet drug.


1976 ◽  
Vol 36 (01) ◽  
pp. 221-229 ◽  
Author(s):  
Charles A. Schiffer ◽  
Caroline L. Whitaker ◽  
Morton Schmukler ◽  
Joseph Aisner ◽  
Steven L. Hilbert

SummaryAlthough dimethyl sulfoxide (DMSO) has been used extensively as a cryopreservative for platelets there are few studies dealing with the effect of DMSO on platelet function. Using techniques similar to those employed in platelet cryopreservation platelets were incubated with final concentrations of 2-10% DMSO at 25° C. After exposure to 5 and 10% DMSO platelets remained discoid and electron micrographs revealed no structural abnormalities. There was no significant change in platelet count. In terms of injury to platelet membranes, there was no increased availability of platelet factor-3 or leakage of nucleotides, 5 hydroxytryptamine (5HT) or glycosidases with final DMSO concentrations of 2.5, 5 and 10% DMSO. Thrombin stimulated nucleotide and 5HT release was reduced by 10% DMSO. Impairment of thrombin induced glycosidase release was noted at lower DMSO concentrations and was dose related. Similarly, aggregation to ADP was progressively impaired at DMSO concentrations from 1-5% and was dose related. After the platelets exposed to DMSO were washed, however, aggregation and release returned to control values. Platelet aggregation by epinephrine was also inhibited by DMSO and this could not be corrected by washing the platelets. DMSO-plasma solutions are hypertonic but only minimal increases in platelet volume (at 10% DMSO) could be detected. Shrinkage of platelets was seen with hypertonic solutions of sodium chloride or sucrose suggesting that the rapid transmembrane passage of DMSO prevented significant shifts of water. These studies demonstrate that there are minimal irreversible alterations in in vitro platelet function after short-term exposure to DMSO.


1968 ◽  
Vol 19 (03/04) ◽  
pp. 438-450
Author(s):  
I. E. T Gan ◽  
B. G Firkin

Summary1. A correlation between platelet aggregation and the plasma enzyme(s) ability to degrade Adenosine Diphosphate (ADP) has been confirmed.2. This plasma activity has been shown to be reduced in 6 patients with uraemia in whom platelet aggregation was demonstrably impaired but not in two whose platelet function was normal. The incorporation of 14C labelled ADP-8-14C was also only reduced in uraemic patients with abnormal platelet aggregation.3. These findings are discussed with particular reference to possible implication in mechanism involved in ADP aggregation of platelets.


1980 ◽  
Vol 44 (03) ◽  
pp. 143-145 ◽  
Author(s):  
J Dalsgaard-Nielsen ◽  
J Gormsen

SummaryHuman platelets in platelet rich plasma (PRP) incubated at 37° C with 0.3–2% halothane for 5–10 min lost the ability to aggregate with ADP, epinephrine and collagen.At the same time uptake and release of 14C-serotonin was inhibited. When halothane supply was removed, platelet functions rapidly returned to normal. However, after high concentrations of halothane, the inhibition of platelet aggregation was irreversible or only partially reversible.The results suggest that halothane anaesthesia produces a transient impairment of platelet function.


Sign in / Sign up

Export Citation Format

Share Document