Bu4N+-Controlled Addition and Olefination with Ethyl 2-(Trimethylsilyl)acetate via Silicon Activation

Synlett ◽  
2017 ◽  
Vol 28 (18) ◽  
pp. 2401-2406 ◽  
Author(s):  
Donal O’Shea ◽  
Manas Das ◽  
Atul Manvar ◽  
Ian Fox ◽  
Dilwyn Roberts

Catalytic Bu4NOAc as silicon activator of ethyl 2-(trimethylsilyl)acetate, in THF, was utilized for the synthesis of β-hydroxy esters, whereas employing catalytic Bu4NOTMS gave α,β-unsaturated esters. The established reaction conditions were applicable to a diverse range of aromatic, heteroaromatic, aliphatic aldehydes and ketones. Reactions were achieved at room temperature without taking any of the specialized precautions that are in place for other organometallics. A stepwise olefination pathway via silylated β-hydroxy esters with subsequent elimination to form the α,β-unsaturated ester has been demonstrated. The key to selective product formation lies in use of the weaker acetate activator which suppresses subsequent elimination whereas stronger TMSO– activator (and base) facilitates both addition and elimination steps. The use of tetrabutyl ammonium salts for both acetate and trimethylsilyloxide activators provide enhanced silicon activation when compared to their inorganic cation counterparts.

2021 ◽  
Author(s):  
Sandeep Kumar ◽  
Himanshi Bhambri ◽  
Sanjay Mandal

In this work, the influence of solvent and reaction conditions (solvothermal vs room temperature) on the product formation is analyzed with two Zn(II) MOFs, {[Zn(bpaipa)]·DMF·2H2O}n (1) and {[Zn(bpaipa)]·5H2O}n (2), where...


2016 ◽  
Vol 11 (2) ◽  
pp. 3452-3458 ◽  
Author(s):  
Davood Azarifar ◽  
Ommolbanin Badalkhani ◽  
Kaveh Khosravi ◽  
Younes Abbasi

Leucine amino acid, has been explored as an effective catalyst for conversion of ketones and aldehydes into corresponding gem-dihydroperoxides using 30% aqueous hydrogen peroxide in acetonitrile at room temperature. The reactions proceed smoothly within short periods of time to provide the respective gem-dihydroperoxides in excellent yields. Mild reaction conditions, low reaction times, high yields, low environmental impact, use of non-expensive, recyclable and green catalyst are the main merits of the present method.


2019 ◽  
Vol 23 (16) ◽  
pp. 1778-1788 ◽  
Author(s):  
Gurpreet Kaur ◽  
Arvind Singh ◽  
Kiran Bala ◽  
Mamta Devi ◽  
Anjana Kumari ◽  
...  

A simple, straightforward and efficient method has been developed for the synthesis of (E)-3-(arylimino)indolin-2-one derivatives and (E)-2-((4-methoxyphenyl)imino)- acenaphthylen-1(2H)-one. The synthesis of these biologically-significant scaffolds was achieved from the reactions of various substituted anilines and isatins or acenaphthaquinone, respectively, using commercially available, environmentally benign and naturally occurring organic acids such as mandelic acid or itaconic acid as catalyst in aqueous medium at room temperature. Mild reaction conditions, energy efficiency, good to excellent yields, environmentally benign conditions, easy isolation of products, no need of column chromatographic separation and the reusability of reaction media are some of the significant features of the present protocol.


2019 ◽  
Vol 16 (12) ◽  
pp. 955-958
Author(s):  
Reddymasu Sireesha ◽  
Reddymasu Sreenivasulu ◽  
Choragudi Chandrasekhar ◽  
Mannam Subba Rao

: Deprotection is significant and conducted over mild reaction conditions, in order to restrict any more side reactions with sensitive functional groups as well as racemization or epimerization of stereo center because the protective groups are often cleaved at last stage in the synthesis. P - Methoxy benzyl (PMB) ether appears unique due to its easy introduction and removal than the other benzyl ether protecting groups. A facile, efficient and highly selective cleavage of P - methoxy benzyl ethers was reported by using 20 mole% Zinc (II) Trifluoromethanesulfonate at room temperature in acetonitrile solvent over 15-120 min. time period. To study the generality of this methodology, several PMB ethers were prepared from a variety of substrates having different protecting groups and subjected to deprotection of PMB ethers using Zn(OTf)2 in acetonitrile. In this methodology, zinc triflate cleaves only PMB ethers without affecting acid sensitivity, base sensitivity and also chiral epoxide groups.


2020 ◽  
Vol 17 (3) ◽  
pp. 211-215
Author(s):  
Da Chen ◽  
Xuan Wang ◽  
Runnan Wang ◽  
Yao Zhan ◽  
Xiaohan Peng ◽  
...  

The Friedlander reaction is the most commonly used method to synthesis substituted quinolines, the essential intermediates in the medicine industry. A facile one-pot approach for synthesizing substituted quinolines by the reaction of isoxazoles, ammonium formate-Pd/C, concentrated sulfuric acid, methanol and ketones using Friedlander reaction conditions is reported. Procedures for the synthesis of quinoline derivatives were optimized, and the yield was up to 90.4%. The yield of aromatic ketones bearing electron-withdrawing groups was better than the ones with electron-donating substituents. The structures of eight substituted quinolines were characterized by MS, IR, H-NMR and 13CNMR, which were in agreement with the expected structures. The mechanism for the conversion was proposed, which involved the Pd/C catalytic hydrogen transfer reduction of unsaturated five-membered ring of isoxazole to produce ortho-amino aromatic ketones. Then the nucleophilic addition of with carbonyl of the ketones generated Schiff base in situ, which underwent an intermolecular aldol reaction followed by the elimination of H2O to give production of substituted quinolines. This new strategy can be readily applied for the construction of quinolines utilizing a diverse range of ketones and avoids the post-reaction separation of the o-amino aromatic ketone compounds. The conventionally used o-amino aromatic ketone compounds in Friedlander reaction to prepare substituted quinoline are laborious to synthesize and are apt to self-polymerize. While oxazole adopted in this work can be prepared at ease by the condensation of benzoacetonitrile and nitrobenzene derivatives under the catalysis of a strong base. Moreover, the key features of this protocol are readily available starting materials, excellent functional group tolerance, mild reaction conditions, operational simplicity, and feasibility for scaling up.


2018 ◽  
Vol 15 (3) ◽  
pp. 380-387
Author(s):  
Xia Zhao ◽  
Xiaoyu Lu ◽  
Lipeng Zhang ◽  
Tianjiao Li ◽  
Kui Lu

Aim and Objective: Pyrazolone sulfones have been reported to exhibit herbicidal and antibacterial activities. In spite of their good bioactivities, only a few methods have been developed to prepare pyrazolone sulfones. However, the substrate scope of these methods is limited. Moreover, the direct sulfonylation of pyrazolone by aryl sulfonyl chloride failed to give pyrazolone sulfones. Thus, developing a more efficient method to synthesize pyrazolone sulfones is very important. Materials and Method: Pyrazolone, aryl sulphonyl hydrazide, iodine, p-toluenesulphonic acid and water were mixed in a sealed tube, which was heated to 100°C for 12 hours. The mixture was cooled to 0°C and m-CPBA was added in batches. The mixture was allowed to stir for 30 min at room temperature. The crude product was purified by silica gel column chromatography to afford sulfuryl pyrazolone. Results: In all cases, the sulfenylation products were formed smoothly under the optimized reaction conditions, and were then oxidized to the corresponding sulfones in good yields by 3-chloroperoxybenzoic acid (m-CPBA) in water. Single crystal X-ray analysis of pyrazolone sulfone 4aa showed that the major tautomer of pyrazolone sulfones was the amide form instead of the enol form observed for pyrazolone thioethers. Moreover, the C=N double bond isomerized to form an α,β-unsaturated C=C double bond. Conclusion: An efficient method to synthesize pyrazolone thioethers by iodine-catalyzed sulfenylation of pyrazolones with aryl sulfonyl hydrazides in water was developed. Moreover, this method was employed to synthesize pyrazolone sulfones in one-pot by subsequent sulfenylation and oxidation reactions.


Synthesis ◽  
2021 ◽  
Author(s):  
Hongji Li ◽  
Wenjie Zhang ◽  
Xueyan Liu ◽  
Zhenfeng Tian

AbstractWe herein report a new nitrogen-directed Rh(III)-catalyzed C(sp2)–H bond functionalization of N-nitrosoanilines and azoxybenzenes with maleimides as a coupling partner, in which the olefination/alkylation process can be finely controlled at room temperature by variation of the reaction conditions. This method shows excellent functional group tolerance, and presents a mild access to the resulting olefination/alkylation products in moderate to good yields.


Author(s):  
Yogita P. Labrath ◽  
Prafulla V. Belge ◽  
Uma G. Kulkarni ◽  
Vilas G. Gaikar

Abstract The turmeric rhizome (Curcuma longa) contains curcuminoids embedded in the starch matrix. It is thus important to target starch hydrolysis to enhance extraction of curcuminoids. In the case of starch hydrolysis, α-amylase is more efficient when the starch is in a gelatinised form than when it is in its natural form. The present work includes hydrolysis of turmeric starch in its natural and gelatinised forms using α-amylase in hydrotrope solution (HS) and scCO2. The optimum rate of starch hydrolysis was obtained using 200 IU cm−3 of α-amylase, at reaction conditions of 6.5 pH at 328 K when 10% w/w of turmeric powder was stirred at 900 rpm in HSs. The hydrolysis in 15 MPa scCO2 at room temperature required a phase modifier and 40 min of residence time (RT). The enzyme treatment of turmeric powder in HSs increased the filtration rate for curcuminoid extraction (gelatinised and native) compared to untreated turmeric powder.


2019 ◽  
Vol 41 (6) ◽  
pp. 1039-1039
Author(s):  
Yingguo Fang and Jie Yan Yingguo Fang and Jie Yan

A novel and efficient alkoxylselenenylation from alkenes, diselenides, and alcohols mediated by iodine is developed, with which a series of β-alkoxy selenides are synthesized. In this procedure, firstly, I2 reacts with diselenide to form in situ the active electrophilic selenium species RSeI, then following an electrophilic addition of it to alkenes provides β-alkoxy selenides with high regioselectivity and in good yields. This new method for achieving β-alkoxy selenides has some advantages over other methods such as using available and cheap iodine as the oxidizing species at room temperature, which makes this reaction has milder reaction conditions and simpler procedure.


1995 ◽  
Vol 50 (9) ◽  
pp. 864-870 ◽  
Author(s):  
P. Krajnik ◽  
R. M. Quint ◽  
S. Solar ◽  
N. Getoff ◽  
G. Sontag

AbstractThe formation of tyrosine isomers by γ-radiolysis of neutral aqueous phenylalanine solutions was found to be strongly dependent on oxygen concentration and temperature. Changing the dose rate did not influence the degradation process. In the presence of 0.25 x 10-3 mol dm-3 oxygen at room temperature the yields of o-tyrosine as well as of m- and p-tyrosine drop from G(o-Tyr) = 0.5 and G(m-Tyr) = G(p-Tyr) = 0.4 at a dose of 0.3 kGy to 0.18 and 0.16 at 2.5 kGy, respectively. In solutions containing 1.25 x 10-3 mol dm-3 oxygen the initial yields remain unchanged but decrease at 2.5 kGy only to G(o-Tyr) = 0.3 and G(m-Tyr) = G(p-Tyr) = 0.20. Under the latter reaction conditions also 3,4-dihydroxyphenylalanine was found.Samples irradiated in frozen state did not show remarkable radiolysis of phenylalanine and tyrosine formation. In the range between 5 and 20°C no essential influence of temperature on the phenylalanine radiolysis and tyrosine yields was observable. The obtained results are important for methods using the tyrosine yields as markers for the detection of irradiated food. Storage conditions and irradiation temperature play an essential role on radiation induced changes of food.


Sign in / Sign up

Export Citation Format

Share Document