scholarly journals Useful Effects of Melatonin in Peripheral Nerve Injury and Development of the Nervous System

2017 ◽  
Vol 12 (01) ◽  
pp. e1-e6 ◽  
Author(s):  
Yigit Uyanikgil ◽  
Turker Cavusoglu ◽  
Kubilay Kılıc ◽  
Gurkan Yigitturk ◽  
Servet Celik ◽  
...  

This review summarizes the role of melatonin (MLT) in defense against toxic-free radicals and its novel effects in the development of the nervous system, and the effect of endogenously produced and exogenously administered MLT in reducing the degree of tissue and nerve injuries. MLT was recently reported to be an effective free radical scavenger and antioxidant. Since endogenous MLT levels fall significantly in senility, these findings imply that the loss of this antioxidant could contribute to the incidence or severity of some age-related neurodegenerative diseases. Considering the high efficacy of MLT in overcoming much of the injury not only to the peripheral nerve but also to other organs, clinical trials for this purpose should be seriously considered.

2020 ◽  
Vol 10 (01) ◽  
pp. e104-e109
Author(s):  
Antonio Molina-Carballo ◽  
Antonio Emilio Jerez-Calero ◽  
Antonio Muñoz-Hoyos

AbstractMelatonin, produced in every cell that possesses mitochondria, acts as an endogenous free radical scavenger, and improves energetic metabolism and immune function, by complex molecular crosstalk with other intracellular compounds. There is greatly increasing evidence regarding beneficial effects of acute and chronic administration of high melatonin doses, in infectious, developmental, and degenerative pathologies, as an endothelial cell and every cell protectant.


2021 ◽  
Vol 22 (3) ◽  
pp. 1401
Author(s):  
Rui D. Alvites ◽  
Mariana V. Branquinho ◽  
Ana C. Sousa ◽  
Federica Zen ◽  
Monica Maurina ◽  
...  

Thousands of people worldwide suffer from peripheral nerve injuries and must deal daily with the resulting physiological and functional deficits. Recent advances in this field are still insufficient to guarantee adequate outcomes, and the development of new and compelling therapeutic options require the use of valid preclinical models that effectively replicate the characteristics and challenges associated with these injuries in humans. In this study, we established a sheep model for common peroneal nerve injuries that can be applied in preclinical research with the advantages associated with the use of large animal models. The anatomy of the common peroneal nerve and topographically related nerves, the functional consequences of its injury and a neurological examination directed at this nerve have been described. Furthermore, the surgical protocol for accessing the common peroneal nerve, the induction of different types of nerve damage and the application of possible therapeutic options were described. Finally, a preliminary morphological and stereological study was carried out to establish control values for the healthy common peroneal nerves regarding this animal model and to identify preliminary differences between therapeutic methods. This study allowed to define the described lateral incision as the best to access the common peroneal nerve, besides establishing 12 and 24 weeks as the minimum periods to study lesions of axonotmesis and neurotmesis, respectively, in this specie. The post-mortem evaluation of the harvested nerves allowed to register stereological values for healthy common peroneal nerves to be used as controls in future studies, and to establish preliminary values associated with the therapeutic performance of the different applied options, although limited by a small sample size, thus requiring further validation studies. Finally, this study demonstrated that the sheep is a valid model of peripheral nerve injury to be used in pre-clinical and translational works and to evaluate the efficacy and safety of nerve injury therapeutic options before its clinical application in humans and veterinary patients.


2007 ◽  
Vol 14 (6) ◽  
pp. 317-325 ◽  
Author(s):  
Fiona M. Smith ◽  
Hila Haskelberg ◽  
David J. Tracey ◽  
Gila Moalem-Taylor

2019 ◽  
Vol 20 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Marzia Malcangio

AbstractBackgroundAcute pain is a warning mechanism that exists to prevent tissue damage, however pain can outlast its protective purpose and persist beyond injury, becoming chronic. Chronic Pain is maladaptive and needs addressing as available medicines are only partially effective and cause severe side effects. There are profound differences between acute and chronic pain. Dramatic changes occur in both peripheral and central pathways resulting in the pain system being sensitised, thereby leading to exaggerated responses to noxious stimuli (hyperalgesia) and responses to non-noxious stimuli (allodynia).Critical role for immune system cells in chronic painPreclinical models of neuropathic pain provide evidence for a critical mechanistic role for immune cells in the chronicity of pain. Importantly, human imaging studies are consistent with preclinical findings, with glial activation evident in the brain of patients experiencing chronic pain. Indeed, immune cells are no longer considered to be passive bystanders in the nervous system; a consensus is emerging that, through their communication with neurons, they can both propagate and maintain disease states, including neuropathic pain. The focus of this review is on the plastic changes that occur under neuropathic pain conditions at the site of nerve injury, the dorsal root ganglia (DRG) and the dorsal horn of the spinal cord. At these sites both endothelial damage and increased neuronal activity result in recruitment of monocytes/macrophages (peripherally) and activation of microglia (centrally), which release mediators that lead to sensitisation of neurons thereby enabling positive feedback that sustains chronic pain.Immune system reactions to peripheral nerve injuriesAt the site of peripheral nerve injury following chemotherapy treatment for cancer for example, the occurrence of endothelial activation results in recruitment of CX3C chemokine receptor 1 (CX3CR1)-expressing monocytes/macrophages, which sensitise nociceptive neurons through the release of reactive oxygen species (ROS) that activate transient receptor potential ankyrin 1 (TRPA1) channels to evoke a pain response. In the DRG, neuro-immune cross talk following peripheral nerve injury is accomplished through the release of extracellular vesicles by neurons, which are engulfed by nearby macrophages. These vesicles deliver several determinants including microRNAs (miRs), with the potential to afford long-term alterations in macrophages that impact pain mechanisms. On one hand the delivery of neuron-derived miR-21 to macrophages for example, polarises these cells towards a pro-inflammatory/pro-nociceptive phenotype; on the other hand, silencing miR-21 expression in sensory neurons prevents both development of neuropathic allodynia and recruitment of macrophages in the DRG.Immune system mechanisms in the central nervous systemIn the dorsal horn of the spinal cord, growing evidence over the last two decades has delineated signalling pathways that mediate neuron-microglia communication such as P2X4/BDNF/GABAA, P2X7/Cathepsin S/Fractalkine/CX3CR1, and CSF-1/CSF-1R/DAP12 pathway-dependent mechanisms.Conclusions and implicationsDefinition of the modalities by which neuron and immune cells communicate at different locations of the pain pathway under neuropathic pain states constitutes innovative biology that takes the pain field in a different direction and provides opportunities for novel approaches for the treatment of chronic pain.


2011 ◽  
Vol 106 (5) ◽  
pp. 2450-2470 ◽  
Author(s):  
Francisco J. Alvarez ◽  
Haley E. Titus-Mitchell ◽  
Katie L. Bullinger ◽  
Michal Kraszpulski ◽  
Paul Nardelli ◽  
...  

Motor and sensory proprioceptive axons reinnervate muscles after peripheral nerve transections followed by microsurgical reattachment; nevertheless, motor coordination remains abnormal and stretch reflexes absent. We analyzed the possibility that permanent losses of central IA afferent synapses, as a consequence of peripheral nerve injury, are responsible for this deficit. VGLUT1 was used as a marker of proprioceptive synapses on rat motoneurons. After nerve injuries synapses are stripped from motoneurons, but while other excitatory and inhibitory inputs eventually recover, VGLUT1 synapses are permanently lost on the cell body (75–95% synaptic losses) and on the proximal 100 μm of dendrite (50% loss). Lost VGLUT1 synapses did not recover, even many months after muscle reinnervation. Interestingly, VGLUT1 density in more distal dendrites did not change. To investigate whether losses are due to VGLUT1 downregulation in injured IA afferents or to complete synaptic disassembly and regression of IA ventral projections, we studied the central trajectories and synaptic varicosities of axon collaterals from control and regenerated afferents with IA-like responses to stretch that were intracellularly filled with neurobiotin. VGLUT1 was present in all synaptic varicosities, identified with the synaptic marker SV2, of control and regenerated afferents. However, regenerated afferents lacked axon collaterals and synapses in lamina IX. In conjunction with the companion electrophysiological study [Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC. J Neurophysiol (August 10, 2011). doi:10.1152/jn.01097.2010], we conclude that peripheral nerve injuries cause a permanent retraction of IA afferent synaptic varicosities from lamina IX and disconnection with motoneurons that is not recovered after peripheral regeneration and reinnervation of muscle by sensory and motor axons.


2017 ◽  
Vol 37 (12) ◽  
pp. 3109-3126 ◽  
Author(s):  
Alejandro González ◽  
Gonzalo Ugarte ◽  
Carlos Restrepo ◽  
Gaspar Herrera ◽  
Ricardo Piña ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document