Increasing Calcium Level Limits Schwann Cell Numbers In Vitro following Peripheral Nerve Injury

2017 ◽  
Vol 33 (06) ◽  
pp. 435-440 ◽  
Author(s):  
Kai Yang ◽  
Yuhui Yan ◽  
Lin-Ling Zhang ◽  
Michael Agresti ◽  
Hani Matloub ◽  
...  

Background After peripheral nerve injury, there is an increase in calcium concentration in the injured nerves. Our previous publications have shown that increase in calcium concentration correlated well with degree of nerve injury and that local infusion of calcitonin has a beneficial effect on nerve recovery. Schwann cells play a pivotal role in regeneration and recovery. We aim to examine cultured Schwann cell survivals in various concentrations of calcium-containing growth media and the effect of calcitonin in such media. Methods To establish baseline in postinjury state, crush injury was induced in male Sprague-Dawley rats' sciatic nerves. Extra- and intraneural calcium concentrations were measured. To study Schwann cell survival, uninjured sciatic nerve segment was harvested and cultured in media containing various amounts of calcium. To study the effect of calcitonin, nerve harvest and culture were done in four additional media: (1) normal control, (2) normal control with calcitonin, (3) high calcium medium, and (4) high calcium medium with calcitonin. Schwann cells were studied and analyzed under fluorescent conditions. Results With increasing calcium concentration, there was a significant decrease in the number of Schwann cells. For the experimental groups, in which calcitonin had been added to the growth medium, there were similar amounts of Schwann cells present in both high and low calcium-containing medium. Conclusion Schwann cells are sensitive to increasing calcium concentration. Calcitonin counteracts the detrimental effects of high calcium on Schwann cell survival. This can have significant future clinical implications for patients with peripheral nerve injuries.

2021 ◽  
Author(s):  
Yaxian Wang ◽  
Fuchao Zhang ◽  
Yunsong Zhang ◽  
Qi Shan ◽  
Wei Liu ◽  
...  

Abstract Background Growth factors execute essential biological functions and affect various physiological and pathological processes, including peripheral nerve injury and regeneration. Our previous sequencing analysis found that betacellulin (Btc), an epidermal growth factor protein family member, showed elevated mRNA expressions in the nerve segment after rat peripheral nerve injury, implying the potential involvement of Btc during peripheral nerve repair. Methods Expression of Btc was examined in Schwann cells. The role of Btc in regulating Schwann cells was investigated by transfecting cultured cells with siRNA segment against Btc or exposed cultured cells with Btc recombinant protein, respectively. The biological functions of Schwann cell-secreted Btc on neurons were also determined. Moreover, the in vivo effect of Btc on Schwann cell migration and axon elongation after rat sciatic nerve injury were further evaluated.Results Immunostaining images and ELISA readings showed Btc was present in and secreted by Schwann cells. Transwell migration and wound healing observations showed that siRNA against Btc impeded Schwann cell migration while exogenous Btc advanced Schwann cell migration. Besides the regulating effect on Schwann cell phenotype, Btc secreted by Schwann cells might influence neuron behavior and affect axon length. In vivo evidence showed that Btc enhanced axonal regrowth and nerve regeneration after both rat sciatic nerve crush injury and transection injury. Conclusion Our findings demonstrated Btc-mediated Schwann cell-axon interactions, revealed the essential roles of Btc on Schwann cell migration and axon elongation, and implied the potential application of Btc as a regenerative strategy for treating peripheral nerve injury.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2497
Author(s):  
Zhong Huang ◽  
Rebecca Powell ◽  
James B. Phillips ◽  
Kirsten Haastert-Talini

Schwann cells play a crucial role in successful peripheral nerve repair and regeneration by supporting both axonal growth and myelination. Schwann cells are therefore a feasible option for cell therapy treatment of peripheral nerve injury. However, sourcing human Schwann cells at quantities required for development beyond research is challenging. Due to their availability, rapid in vitro expansion, survival, and integration within the host tissue, stem cells have attracted considerable attention as candidate cell therapies. Among them, induced pluripotent stem cells (iPSCs) with the associated prospects for personalized treatment are a promising therapy to take the leap from bench to bedside. In this critical review, we firstly focus on the current knowledge of the Schwann cell phenotype in regard to peripheral nerve injury, including crosstalk with the immune system during peripheral nerve regeneration. Then, we review iPSC to Schwann cell derivation protocols and the results from recent in vitro and in vivo studies. We finally conclude with some prospects for the use of iPSCs in clinical settings.


2013 ◽  
Vol 119 (3) ◽  
pp. 720-732 ◽  
Author(s):  
Yerko A. Berrocal ◽  
Vania W. Almeida ◽  
Ranjan Gupta ◽  
Allan D. Levi

Object Segmental nerve defects pose a daunting clinical challenge, as peripheral nerve injury studies have established that there is a critical nerve gap length for which the distance cannot be successfully bridged with current techniques. Construction of a neural prosthesis filled with Schwann cells (SCs) could provide an alternative treatment to successfully repair these long segmental gaps in the peripheral nervous system. The object of this study was to evaluate the ability of autologous SCs to increase the length at which segmental nerve defects can be bridged using a collagen tube. Methods The authors studied the use of absorbable collagen conduits in combination with autologous SCs (200,000 cells/μl) to promote axonal growth across a critical size defect (13 mm) in the sciatic nerve of male Fischer rats. Control groups were treated with serum only–filled conduits of reversed sciatic nerve autografts. Animals were assessed for survival of the transplanted SCs as well as the quantity of myelinated axons in the proximal, middle, and distal portions of the channel. Results Schwann cell survival was confirmed at 4 and 16 weeks postsurgery by the presence of prelabeled green fluorescent protein–positive SCs within the regenerated cable. The addition of SCs to the nerve guide significantly enhanced the regeneration of myelinated axons from the nerve stump into the proximal (p < 0.001) and middle points (p < 0.01) of the tube at 4 weeks. The regeneration of myelinated axons at 16 weeks was significantly enhanced throughout the entire length of the nerve guide (p < 0.001) as compared with their number in a serum–only filled tube and was similar in number compared with the reversed autograft. Autotomy scores were significantly lower in the animals whose sciatic nerve was repaired with a collagen conduit either without (p < 0.01) or with SCs (p < 0.001) when compared with a reversed autograft. Conclusions The technique of adding SCs to a guidance channel significantly enhanced the gap distance that can be repaired after peripheral nerve injury with long segmental defects and holds promise in humans. Most importantly, this study represents some of the first essential steps in bringing autologous SC-based therapies to the domain of peripheral nerve injuries with long segmental defects.


1998 ◽  
Vol 43 (2) ◽  
pp. 205-211 ◽  
Author(s):  
Jesper Sørensen ◽  
Georg Haase ◽  
Christian Krarup ◽  
Helene Gilgenkrantz ◽  
Axel Kahn ◽  
...  

1987 ◽  
Vol 165 (4) ◽  
pp. 1218-1223 ◽  
Author(s):  
V H Perry ◽  
M C Brown ◽  
S Gordon

Using mAbs and immunocytochemistry we have examined the response of macrophages (M phi) after crush injury to the sciatic or optic nerve in the mouse and rat. We have established that large numbers of M phi enter peripheral nerves containing degenerating axons; the M phi are localized to the portion containing damaged axons, and they phagocytose myelin. The period of recruitment of the M phi in the peripheral nerve is before and during the period of maximal proliferation of the Schwann cells. In contrast, the degenerating optic nerve attracts few M phi, and the removal of myelin is much slower. These results show the clearly different responses of M phi to damage in the central and peripheral nervous systems, and suggest that M phi may be an important component of subsequent repair as well as myelin degradation.


Glia ◽  
2019 ◽  
Vol 68 (3) ◽  
pp. 670-679 ◽  
Author(s):  
Chun Yao ◽  
Yanping Chen ◽  
Jing Wang ◽  
Tianmei Qian ◽  
Wei Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document