Lysophosphatidylcholine Decreases the Synthesis of Tissue Factor Pathway Inhibitor in Human Umbilical Vein Endothelial Cells

1998 ◽  
Vol 79 (01) ◽  
pp. 217-221 ◽  
Author(s):  
Koichi Kokame ◽  
Toshiyuki Miyata ◽  
Naoaki Sato ◽  
Hisao Kato

SummaryThrombotic complications are frequently associated with atherosclerosis. Lysophosphatidylcholine (LPC), a component accumulated in oxidatively modified LDL (ox-LDL), is known to play a crucial role in the initiation and progression of atherosclerotic vascular lesions. Since a vascular anticoagulant, tissue factor pathway inhibitor (TFPI), has the function of regulating the initial reaction of tissue factor (TF)-induced coagulation, we investigated the effect of LPC on TFPI synthesis in cultured human umbilical vein endothelial cells (HUVEC). The treatment of HUVEC with LPC for 24 h decreased TFPI antigen levels in both the culture medium and the cell lysate in a dose-dependent manner. Northern blot analysis revealed that LPC caused a time-dependent decrease in the TFPI mRNA levels. The levels of TFPI antigen and mRNA were decreased to 72% and 38%, respectively, by the incubation with 50 μM LPC for 24 h. The down-regulation by LPC of TFPI mRNA expression was not observed in the presence of cycloheximide, suggesting that protein synthesis was involved in the suppression of TFPI mRNA expression. The TFPI mRNA levels in actinomycin D-treated cells were relatively stable, indicating that the down-regulation of TFPI mRNA by LPC would be partly explained by the enhanced mRNA destabilization. In contrast to the significant down-regulatory effects of LPC on TFPI expression, LPC did not induce TF mRNA expression in HUVEC. These results indicate that LPC accumulated in the atherosclerotic vascular wall would suppress endothelial TFPI synthesis, reducing the antithrombotic property of endothelial cells.

Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3568-3578 ◽  
Author(s):  
John-Bjarne Hansen ◽  
Randi Olsen ◽  
Paul Webster

AbstractTissue factor pathway inhibitor (TFPI) is a serine protease inhibitor of the extrinsic coagulation system, synthesized in endothelial cells, which has recently been shown to play an important role in the regulation of activated coagulation factors at the endothelial cell surface. In the present study we investigated the subcellular localization and metabolism of TFPI in human umbilical vein endothelial cells (HUVEC). Immunocytochemical labeling of HUVEC with anti-TFPI showed specific labeling associated with the cell surface and with many intracellular organelles including the Golgi complex. Further characterization of these organelles was performed by colocalizing the anti-TFPI with 3-(2,4-dinitroanilino)′-amino-N-methyldipropylamine (DAMP; to demonstrate low pH), mannose phosphate receptor (endosomes), and LAMP 1 (late endocytic compartments). TFPI also colocalized with antibodies to the human transferrin receptor, a marker for early endocytic, recycling compartment. Endogenous TFPI colocalized with biotin in intracellular vesicles during endocytosis after biotinylation of the cell surface, which indicated that TFPI was being co-internalized with the surface biotin. The binding of exogenously added 125I-TFPI increased linearly to HUVEC over the concentration range of 0 to 32 nmol/L without saturation, the binding was not affected by up to a thousand-fold molar excess of unlabeled TFPI, and heparin inhibited the binding dose dependently. An intact C-terminal domain was important for the interaction between TFPI and the cell surface of HUVEC, because less than 10% of a C-terminal truncated form of TFPI (TFPI1-161 ) was bound after addition of equimolar concentrations of full-length TFPI. Exogenously added 125I-TFPI was not degraded in HUVEC during 4 hours at 37°C. The presence of TFPI in endocytic and recycling compartments support the hypothesis that endogenous, membrane-anchored TFPI could be internalized for subsequent recycling back to the cell surface.


2007 ◽  
Vol 97 (05) ◽  
pp. 839-846 ◽  
Author(s):  
Wen Wang ◽  
Shu-Yu Zu ◽  
Wei Liu ◽  
Zi-Qiang Zhu ◽  
Guang-Jin Zhu

SummaryAdrenomedullin (ADM) is a vasodilator peptide that has a variety of effects, including antithrombotic activities and resistant roles to lipopolysaccharide (LPS)-induced septic shock. During sepsis,LPS triggers the development of disseminated intravascular coagulation (DIC) via the tissue factor-dependent pathway of coagulation.It is unknown whether the antithrombotic activities of ADM contribute to its resistance to sepsis. In the present study, we investigated the effects of ADM on tissue factor pathway inhibitor (TFPI) (primary anticoagulant factor) expression in human umbilical vein endothelial cells (HUVECs) exposed to LPS,and the possible underlying mechanism for these effects.Exposure of HUVECs to LPS for 12 hours caused significant decrease of TFPI protein activities and mRNA expression.These effects were abolished by treatment withADM (10–10 to 10–6 M), cAMP analogue and calcium antagonist. Accordingly, cAMP antagonist inhibited the counteraction effect of ADM on LPS in TFPI expression. Electrophoresis mobility shift assay (EMSA) and Western blot analysis showed that the protein level of GATA-2 and SP1 transcriptional factors and their binding to the corresponding regulatory sequences decreased by LPS treatment. And these effects of LPS were antagonized by ADM. Promoter- reporter assays and mutational analysis also confirmed the roles of GATA-2 and SP1 motifs from –1247 to –381bp promoter sequence in TFPI inducible expression. Taken together, these results indicate that ADM antagonizes the effect of LPS on TFPI expression, which is mediated by affecting transcriptional factor GATA-2 and SP1 through cAMP and calcium signaling pathway.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2253-2253
Author(s):  
Keiko Maruyama ◽  
Eriko Morishita ◽  
Hiroki Torishima ◽  
Akiko Sekiya ◽  
Hidesaku Asakura ◽  
...  

Abstract Abstract 2253 OBJECTIVE: 3-Hydroxyl-3-methyl coenzyme A reductase inhibitors (statins) inhibit the production of mevalonate and other isoprenoid intermediates of the cholesterol biosynthetic pathway, such as farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP). Statins can protect the vasculature from inflammation and atherosclerosis caused by cholesterol-dependent and cholesterol-independent mechanisms. The latest investigations show that statins modulate the expression of genes related to inflammation, blood coagulation and fibrinolysis in cultured endothelial cells. Tissue factor pathway inhibitor (TFPI) which is expressed by endothelial cells plays a crucial role in hemostasis by regulating TF-induced initiation of coagulation. The aim of this study was to elucidate the effects of fluvastatin, lipophilic statin, on expressions of TFPI in human umbilical vein endothelial cells (HUVECs). METHODS: HUVECs were incubated for 24 h in culture medium including fluvastatin (0.1, 1.0, 10.0 μM). The expression of TFPI mRNA and protein was evaluated by western blot and reverse transcription-polymerase chain reaction (RT-PCR), respectively. To identify which product of statin reaction is necessary for the effect of fluvastatin, HUVECs were incubated for 24h with fluvastatin with mavalonate, FPP, or GGPP. On the other hand, it is known that fluvastatin increase nitric oxide (NO) bioavailability. To determine whether fluvastatin induced NO affects TFPI mRNA and protein expression, HUVECs were incubated for 24h with fluvastatin with NG-Nitro-L-arginine methyl ester, hydrochloride (L-NAME: specific inhibitor of NO synthase). Additionally, to determine whether fluvastatin affects p38MAPK, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), phosphoinositide 3-kinase (PI3K), and protein kinase C (PKC) pathways, HUVECs were incubated for 24h with fluvastatin with the inhibitors of p38MAPK (SB203580), JNK (SP600125), MEK (U0126), PI3K (LY294002), and PKC (GF109203). The expression of TFPI mRNA and protein was evaluated by western blot. RESULTS: Fluvastatin increased TFPI mRNA and protein expression (1μM: p<0.01, 10μM: p<0.05; Figure 1). This fluvastatin-dependent up-regulation of TFPI was prevented by mevalonate and geranylgeranylphosphate (GG-PP). In contrast, the addition of L-NAME did not alter induction of TFPI expression by fluvastatin. Similarly, Y-27632 (Rho kinase inhibitor) and NSC23766 (Rac1 inhibitor) were ineffective. Additionally, the inhibitors of p38MAPK, PI3K, and PKC prevented fluvastatin-dependent up-regulation. On the other hand, the inhibitors of JNK and MEK were ineffective. CONCLUSIONS: This study suggests that fluvastatin significantly increases TFPI mRNA and protein expression, and this effect of fluvastatin is accompanied by the activation of p38 MAPK, PI3K, and PKC pathways. Therefore, this effect may play an important role in preventing cardiovascular events. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 5 (S2) ◽  
pp. 1124-1125
Author(s):  
R. Olsen ◽  
J.-B. Hansen ◽  
P. Webster

Tissue Factor Pathway Inhibitor (TFPI) is a potent inhibitor of the extrinsic coagulation system, synthesized in endothelial cells. Membrane bound TFPI has recently been shown to play an important role in the degradation of activated coagulation factors in the endothelium. Comparison of subcellular TFPI localization patterns and TFPI production between Human Umbilical Vein Endothelial Cells (HUVEC) and an immortalized cell line (ECV 304) are presented here, as are the essential protocol modifications that we used to obtain labeling results by both light- and electron microscopy. We show that ECV 304 cells are similar to HUVEC in that TFPI is present in the Golgi complex (fig. 1) as well as in the endocytic pathway of ECV cells. Additionally, they secrete higher levels of TFPI into the culture medium than HUVEC. A colocalization of anti-TFPI with endocytosed BSA-gold, as well as with accumulated DAMP, demonstrated the presence of TFPI in the endocytic pathway.


2004 ◽  
Vol 92 (10) ◽  
pp. 776-786 ◽  
Author(s):  
Benjamin Brenner ◽  
Tamar Katz ◽  
Yohei Miyagi ◽  
Naomi Lanir ◽  
Anat Aharon

SummaryThe placenta is a highly vascularized organ with fetal and maternal blood supply. Syncytiotrophoblasts (STB), which line the placenta villous are possibly involved in local hemostatic mechanisms.The aim of this study was to evaluate the levels of tissue factor (TF) and its inhibitors, tissue factor pathway inhibitor (TFPI,TFPI-2), in STB model within hemostatic and inflammatory environments. Human primary STB cell cultures were characterized by vascular and hormonal markers. TF and TFPI mRNA expression, protein levels and activity were determined and compared to human umbilical vein endothelial cells (HUVEC). High levels of TF were demonstrated in STB cells compared to low levels in HUVEC. In contrast, STB expressed lower TFPI levels than HUVEC. LPS and TNFα increased the high constitutive TF in STB, whereas LPS and IL-1α further reduced TFPI levels. The procoagulant tendency of STB identified by us may reflect the physiological need for immediate inhibition of hemorrhage in the placental inter-villous spaces in basal and inflammatory conditions.This hemostatic balance may be critical for normal placental function and pregnancy outcome.


1989 ◽  
Vol 61 (01) ◽  
pp. 101-105 ◽  
Author(s):  
Bonnie J Warn-Cramer ◽  
Fanny E Almus ◽  
Samuel I Rapaport

SummaryCultured human umbilical vein endothelial cells (HUVEC) have been reported to produce extrinsic pathway inhibitor (EPI), the factor Xa-dependent inhibitor of factor VHa/tissue factor (TF). We examined the release of this inhibitor from HUVEC as a function of their growth state and in response to the induction of endothelial cell TF activity. HUVEC constitutively produced significant amounts of EPI at all stages of their growth in culture including the post-confluent state. Rate of release varied over a 3-fold range for primary cultures from 12 different batches of pooled umbilical cord cells. Constitutive EPI release was unaltered during a 6 hour period of induction of TF activity with thrombin or phorbol ester but slowed during longer incubation of the cells with phorbol ester. Whereas plasma contains two molecular weight forms of EPI, only the higher of these two molecular weight forms was demonstrable by Western analysis of HUVEC supernatants with 125I-factor Xa as the ligand.


Sign in / Sign up

Export Citation Format

Share Document