Increased Expression of u-PA and u-PAR on Monocytes by LDL and Lp(a) Lipoproteins – Consequences for Plasmin Generation and Monocyte Adhesion

1999 ◽  
Vol 81 (04) ◽  
pp. 594-560 ◽  
Author(s):  
Florence Ganné ◽  
Marc Vasse ◽  
Jean-Louis Beaudeu ◽  
Jacqueline Peynet ◽  
Arnaud François ◽  
...  

SummaryMonocyte-derived foam cells figure prominently in rupture-prone regions of atherosclerotic plaque. As urokinase/urokinase-receptor (u-PA/u-PAR) is the trigger of a proteolytic cascade responsible for ECM degradation, we have examined the effect of atherogenic lipoproteins on monocyte surface expression of u-PAR and u-PA. Peripheral blood monocytes, isolated from 10 healthy volunteers, were incubated with 10 to 200 µg/ml of native or oxidised (ox-) atherogenous lipoproteins for 18 h and cell surface expression of u-PA and u-PAR was analysed by flow cytometry. Both LDL and Lp(a) induced a dose-dependent increase in u-PA (1.6-fold increase with 200 μg/ml of ox-LDL) and u-PAR [1.7-fold increase with 200 μg/ml of ox-Lp(a)]. There is a great variability of the response among the donors, some of them remaining non-responders (absence of increase of u-PA or u-PAR) even at 200 μg/ml of lipoproteins. In positive responders, enhanced u-PA/u-PAR is associated with a significant increase of plasmin generation (1.9-fold increase with 200 μg/ml of ox-LDL), as determined by an amidolytic assay. Furthermore, monocyte adhesion to vitronectin and fibrinogen was significantly enhanced by the lipoproteins [respectively 2-fold and 1.7-fold increase with 200 μg/ml of ox-Lp(a)], due to the increase of u-PAR and ICAM-1, which are receptors for vitronectin and fibrinogen. These data suggest that atherogenous lipoproteins could contribute to the development of atheromatous plaque by increasing monocyte adhesion and trigger plaque weakening by inducing ECM degradation.

Blood ◽  
2000 ◽  
Vol 96 (8) ◽  
pp. 2808-2813 ◽  
Author(s):  
Shengdian Wang ◽  
Gefeng Zhu ◽  
Andrei I. Chapoval ◽  
Haidong Dong ◽  
Koji Tamada ◽  
...  

Abstract This report describes a new human B7-like gene designatedB7-H2. Cell surface expression of B7-H2 protein is detected in monocyte-derived immature dendritic cells. Soluble B7-H2 and immunoglobulin (Ig) fusion protein, B7-H2Ig, binds activated but not resting T cells and the binding is abrogated by inducible costimulator Ig (ICOSIg), but not CTLA4Ig. In addition, ICOSIg stains Chinese hamster ovary cells transfected with B7-H2 gene. By suboptimal cross-linking of CD3, costimulation of T-cell proliferation by B7-H2Ig is dose-dependent and correlates with secretion of interleukin (IL)-2, whereas optimal CD3 ligation preferentially stimulates IL-10 production. The results indicate that B7-H2 is a putative ligand for the ICOS T-cell molecule.


2001 ◽  
Vol 280 (1) ◽  
pp. L58-L68 ◽  
Author(s):  
Ulrich Maus ◽  
Susanne Herold ◽  
Heidrun Muth ◽  
Regina Maus ◽  
Leander Ermert ◽  
...  

The evaluation of monocytes recruited into the alveolar space under both physiological and inflammatory conditions is hampered by difficulties in discriminating these cells from resident alveolar macrophages (rAMs). Using the intravenous injected fluorescent dye PKH26, which accumulated in rAMs without labeling blood leukocytes, we developed a technique that permits the identification, isolation, and functional analysis of monocytes recruited into lung alveoli of mice. Alveolar deposition of murine JE, the homologue of human monocyte chemoattractant protein (MCP)-1 (JE/MCP-1), in mice provoked an alveolar influx of monocytes that were recovered by bronchoalveolar lavage and separated from PKH26-stained rAMs by flow cytometry. Alveolar recruited monocytes showed a blood monocytic phenotype as assessed by cell surface expression of F4/80, CD11a, CD11b, CD18, CD49d, and CD62L. In contrast, CD14 was markedly upregulated on alveolar recruited monocytes together with increased tumor necrosis factor-α message, discriminating this monocyte population from peripheral blood monocytes and rAMs. Thus monocytes recruited into the alveolar air space of mice in response to JE/MCP-1 keep phenotypic features of blood monocytes but upregulate CD14 and are “primed” for enhanced responsiveness to endotoxin with increased cytokine expression.


Blood ◽  
2009 ◽  
Vol 114 (14) ◽  
pp. 3052-3055 ◽  
Author(s):  
Lyn R. Ambrose ◽  
Anne-Sophie Morel ◽  
Anthony N. Warrens

Neutropenia is a recognized adverse event in patients treated with the humanized anti-CD52 monoclonal antibody alemtuzumab. However, as it is widely believed that neutrophils do not express CD52, the etiology of alemtuzumab-associated neutropenia is unclear. We have found that neutrophils express both mRNA coding for CD52 and the protein itself on the cell surface. We confirmed cell-surface expression using 3 different anti-CD52 antibodies, and note that neutrophils express lower levels of CD52 than lymphocytes and eosinophils. Further, incubation of alemtuzumab with neutrophils results in dose-dependent, complement-mediated lysis in the presence of both heterologous and autologous complement. These data offer an explanation for the etiology of alemtuzumab-associated neutropenia. In a climate of increased use of alemtuzumab in leukemia and other disease states, as well as in transplantation, these data highlight the need for increased vigilance of emerging neutropenia in patients treated with alemtuzumab.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3542-3542 ◽  
Author(s):  
Katherine A Sparger ◽  
Nan Li ◽  
Zhi-Jian Liu ◽  
Haley Ramsey ◽  
Martha Sola-Visner

Abstract Thrombocytopenia affects 20-35% of infants admitted to Neonatal Intensive Care Units. The incidence of thrombocytopenia is inversely proportional to gestational age, and approaches 70% among the most preterm neonates (birth weight <1,000 grams). Preterm infants also have the highest incidence of bleeding of any age group, with 25-31% developing intracranial hemorrhage. Currently, platelet (plt) transfusions are the only therapeutic option for thrombocytopenic neonates. In the last 5 years, two thrombopoietin (TPO) mimetics, romiplostim (ROM) and eltrombopag, received FDA approval for the treatment of adults with ITP. Based on the severity and duration of thrombocytopenia, 10% of thrombocytopenic neonates could benefit from TPO-mimetic therapy. Our prior in vitro studies demonstrated that human neonatal megakaryocyte (MK) progenitors are significantly more sensitive to TPO than adult progenitors (Pastos et al., Blood, 2006; Liu et al., Blood, 2011). This study was designed to compare the in vivo responses of newborn vs. adult mice to ROM. Based on prior observations, we hypothesized that newborn pups would be more sensitive to TPO-mimetics than adult mice. As a first step, healthy adult C57BL/6 mice were given a single subcutaneous (SC) injection of 0.1% BSA (control) or ROM at a dose of 10, 30, 100, or 300 ng/g body weight. Newborn mice on post-natal day 1 (P1) received a single SC injection of either 0.1% BSA or ROM at a dose of 30 or 300 ng/g. Plt count and immature plt fraction (IPF) were measured on the day of injection and every other day for 14 days. The baseline plt count in adult mice was 1,184±204 x103/µL. Adult mice treated with ROM (n=3-4 per group) exhibited a dose-dependent increase in plt count and IPF, which peaked on day 5 in those receiving lower ROM doses (10 and 30 ng/g), and on day 7 in those receiving higher ROM doses (100 and 300 ng/g). On day 7, adult mice treated with ROM 300 ng/g had a 4.2-fold increase in plt count compared to BSA controls (6,733±511 vs. 1,600±216 x103/µL, respectively; p<0.0001). Newborn mice (P1) had significantly lower baseline plt counts (624±130 x103/µL; p<0.0001) compared to adults, and similarly responded to ROM injection with a dose-dependent increase in plt count that peaked on day 5. However, plt counts on post-natal day 5 (P5) were 1,020±198 x103/µL for newborn mice treated with ROM 30 ng/g and 1,355±137 x103/µL for newborn mice treated with ROM 300 ng/g (n=17 per group), representing less than a 2-fold increase over BSA treated pups (701±119 x103/µL). To evaluate the effect of ROM on megakaryopoiesis, a subset of adult and newborn mice treated with 0.1% BSA or ROM 300 ng/g (n=3-4 per group) were euthanized on day 5 after injection. Liver, spleen, and bone marrow (BM) MKs were immunohistochemically stained for von Willebrand factor and quantified as described (Hu Z et al., Neonatology, 2010). Overall, ROM-treated adult mice had significantly increased numbers of MKs compared to controls in BM (2.3-fold increase; p=0.0002) and spleen (3.9-fold increase; p=0.006). ROM-treated newborn mice exhibited non-significant increases in MK numbers in BM (2.2-fold increase; p=0.19), spleen (1.6-fold increase; p=0.35), and liver (1.4-fold increase; p=0.31). Because newborn C57BL/6 mice transition from fetal liver to adult BM hematopoiesis during the first 10 to 14 days of life and the BM is not well formed until P10, we injected newborn mice at P5 (instead of P1) and evaluated the response to ROM. Similar to the younger group, P5 mice treated with ROM 300 ng/g reached peak platelet counts at P11, but the plt count was only 1.4-fold higher than BSA control animals (1,340±440 vs. 927±151 x103/µL, respectively; p=0.19). In conclusion, this study indicated that newborn mice are less responsive to ROM than adult mice. This was a surprising finding, given that human neonatal MK progenitors have been consistently shown to be more sensitive to TPO than adult MK progenitors. The reasons underlying the modest in vivo response of neonates are unclear, but might be related to the transition in hematopoietic sites that occurs during this period in murine development (corresponding to the second trimester of human gestation), high baseline thrombopoietic demands associated with rapid growth, potential pharmacokinetic factors, or developmental differences in the splenic or BM microenvironments of newborn and adult mice. Disclosures: No relevant conflicts of interest to declare.


2000 ◽  
Vol 83 (06) ◽  
pp. 937-943 ◽  
Author(s):  
Birgit Svensson ◽  
Randi Olsen ◽  
Mirella Ezban ◽  
Bjarne Østerud ◽  
Ruth Paulssen ◽  
...  

SummaryTFPI is a potent inhibitor of the extrinsic coagulation system constitutively synthesized by endothelial cells. A major portion of intravascular TFPI is stored associated with endothelial cells, and administration of unfractionated heparin (UFH) in vivo causes a prompt mobilization of TFPI into the circulation. The present study was conducted to investigate how UFH affected the synthesis, secretion and anticoagulant potency of TFPI in endothelial cells in vitro. A spontaneously transformed immortal endothelial cell line was used (ECV304). Stimulation of ECV304 cells with UFH caused a prompt dose-dependent (0-5 IU UFH/ml) release of TFPI to the medium accompanied by no change of TFPI at the surface membrane assessed by immunocytochemical methods. Northern blot analysis revealed two mRNA transcripts for TFPI with a molecular size of 1.4 kb and 4.4 kb, respectively. Stimulation of ECV304 cells for 24 hrs with various concentrations of UFH caused a dose-dependent increase of TFPI in the medium (6.2-29.6 ng/106 cells within the concentration range 0-10 IU/ml). A similar dose-dependent increase in the expression of both TFPI mRNA species was observed. Long-term incubation of ECV304 cells with 5.0 IU/ml UFH caused a 5-10 fold increase in the TFPI concentration accumulated in the medium over 48 hrs. The increased TFPI mRNA expression induced by UFH appeared already after 10 min, peaked after 2-4 hrs, remained augmented throughout the entire period of UFH exposure, and preceeded the synthesis-dependent increase in TFPI release by 2-4 hrs. The procoagulant activity of the cells was downregulated by 36 % and the contribution of TFPI to the anticoagulant potency of ECV304 cells was moderately increased after 24 hrs heparin stimulation. It is suggested that these mechanisms are of major importance for the anticoagulant function of heparins.


1989 ◽  
Vol 256 (3) ◽  
pp. H626-H629
Author(s):  
T. Tamaki ◽  
C. E. Hura ◽  
R. T. Kunau

Dopamine increases renal blood flow and dilates isolated afferent and efferent arterioles preconstricted with norepinephrine via dopamine 1 (DA1) receptors. DA1-receptor stimulation also results in dopamine-induced elevation of adenosine 3'5'-cyclic monophosphate (cAMP) in dog and rat renal arteries. The present study was undertaken to determine the effects of dopamine on cAMP accumulation in isolated canine superficial cortical afferent arterioles. The effect of Sch 23390, a specific DA1-receptor antagonist, on dopamine-stimulated cAMP accumulation was also examined. Forskolin (10(-5) M), a potent stimulator of adenylate cyclase, produced a greater than 11-fold increase in cAMP production compared with control. Dopamine produced a dose-dependent increase in cAMP accumulation in afferent arterioles at concentrations of 10(-4) M and 10(-6) M, Sch 23390 (2 x 10(-4) M) abolished dopamine (10(-4) M)-stimulated cAMP accumulation in afferent arterioles. The dopamine-induced increase in arteriolar cAMP accumulation was unaffected by propranolol (10(-4) M). Our results suggest that dopamine increases cAMP production in afferent arterioles via the DA1 receptor. Increased cAMP production may be responsible for dopamine-induced vasodilation in the afferent arteriole.


Endocrinology ◽  
2010 ◽  
Vol 151 (2) ◽  
pp. 660-670 ◽  
Author(s):  
Simon Roy ◽  
Benoît Perron ◽  
Nicole Gallo-Payet

Asparagine-linked glycosylation (N-glycosylation) of G protein-coupled receptors may be necessary for functions ranging from agonist binding, folding, maturation, stability, and internalization. Human melanocortin 2 receptor (MC2R) possesses putative N-glycosylation sites in its N-terminal extracellular domain; however, to date, the role of MC2R N-glycosylation has yet to be investigated. The objective of the present study is to examine whether N-glycosylation is essential or not for cell surface expression and cAMP production in native and MC2R accessory protein (MRAPα, -β, or -dCT)-expressing cells using 293/FRT transfected with Myc-MC2R. Western blot analyses performed with or without endoglycosidase H, peptide:N-glycosidase F or tunicamycin treatments and site-directed mutagenesis revealed that MC2R was glycosylated in the N-terminal domain at its two putative N-glycosylation sites (Asn12-Asn13-Thr14 and Asn17-Asn18-Ser19). In the absence of human MRAP coexpression, N-glycosylation of at least one of the two sites was necessary for MC2R cell surface expression. However, when MRAP was present, cell surface expression of MC2R mutants was either rescued entirely with the N17-18Q (QQNN) and N12-13Q (NNQQ) mutants or partially with the unglycosylated N12-13, 17-18Q (QQQQ) mutant. Functional and expression analyses revealed a discrepancy between wild-type (WT) and QQQQ cell surface receptor levels and maximal cAMP production with a 4-fold increase in EC50 values. Taken together, these results indicate that the absence of MC2R N-glycosylation abrogates to a large extent MC2R cell surface expression in the absence of MRAPs, whereas when MC2R is N-glycosylated, it can be expressed at the plasma membrane without MRAP assistance.


1986 ◽  
Vol 164 (5) ◽  
pp. 1710-1722 ◽  
Author(s):  
A P Albino ◽  
A N Houghton ◽  
M Eisinger ◽  
J S Lee ◽  
R R Kantor ◽  
...  

Human melanocytes infected with Ki-MSV or Ha-MSV, but not amphotropic MuLV, undergo a series of transformation-related changes that are characteristic of malignant melanoma. These are (a) expression of Ia antigens, in particular DP, DQ, and DR class II histocompatibility gene products, (b) a transformed morphology and ability to grow in soft agar, and (c) a 5-10-fold increase in the cell surface expression of GD3 ganglioside. However, other characteristics of melanoma, such as independence from specific growth factors and loss of adenosine deaminase binding protein were not observed. We conclude that viral ras oncogenes initiate early transformation events in melanocytes, and that Ia antigen expression is a transformation marker in this system.


Blood ◽  
1988 ◽  
Vol 71 (1) ◽  
pp. 86-93
Author(s):  
CJ Parker ◽  
RN Frame ◽  
MR Elstad

An arginine-glycine-aspartic acid sequence (RGD in the single letter code for amino acids) is present in the cell attachment site of both vitronectin and fibronectin. Inasmuch as fibronectin and synthetic peptides containing RGD enhance ingestion of opsonized particles by monocytes, we investigated the effects of vitronectin on phagocytosis by monocytes of sheep erythrocytes bearing IgG (EA) or complement C3b (EC3b). Peripheral blood monocytes were isolated by countercurrent elutriation and allowed to adhere to slides that had been coated with either vitronectin or fibronectin. Next, EA or EC3b were incubated with the adherent monocytes, and phagocytosis was subsequently quantified. Vitronectin caused the same dose dependent increase in phagocytosis as fibronectin. The augmentation of phagocytosis of EA induced by vitronectin could be inhibited by the F(ab')2 fragments of anti- vitronectin IgG but not by preimmune F(ab')2. The maximum phagocytosis of EA induced by vitronectin could not be enhanced by the addition of fibronectin, suggesting that vitronectin and fibronectin act on the same population of monocytes and that the two proteins stimulate the same mechanism through which the enhanced phagocytosis is mediated. Fibronectin and vitronectin caused a tenfold increase in the attachment of EC3b to monocytes, but phagocytosis was augmented minimally. These studies demonstrate that vitronectin modulates interactions between monocytes and opsonized particles.


Sign in / Sign up

Export Citation Format

Share Document