Foetal Growth Restriction in Children with Prothrombotic Risk Factors

2001 ◽  
Vol 86 (10) ◽  
pp. 1012-2001 ◽  
Author(s):  
Rüdiger von Kries ◽  
Ralf Junker ◽  
Doris Oberle ◽  
Andrea Kosch ◽  
Ulrike Nowak-Göttl

SummaryPlacental infarction is frequently observed in low birth weight children. To evaluate whether low birth weight in healthy term neonates is associated with foetal inherited prothrombotic risk factors this retrospective study was conducted. Outcome measures were “birth weight in the lowest quartile” and “birth weight in the lowest decile” in singletons with a gestational age of ≥37 weeks.The analyses were based on 375 Caucasian children screened at the Münster childhood thrombophilia centre with complete data for all prothrombotic risk factors (factor V G1691A, prothrombin G20210A, elevated lipoprotein (a), protein C-, protein S-, antithrombin-deficiency). The proportion of children in the lowest birth weight quartile increased from 23.7% to 30.5% to 48.0% for children with no, only single heterozygous and multiple or homozygous defects respectively. The respective adjusted odds ratios (95% confidence intervals) of thrombophilia for birth weight in the lowest quartile (lowest decile) were 1.53 (0.76-3.08) in carriers of one prothrombotic risk factor and 4.01 (1.48-10.84) in subjects carrying multiple or homozygous defects. We identified foetal thrombophilia as an additional cause of low birth weight.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3953-3953
Author(s):  
Valerie Li Thiao Te ◽  
Remi Favier ◽  
Jeanne-Yvonne Borg ◽  
Estelle Cadet ◽  
Jacqueline Reynaud ◽  
...  

Abstract This retrospective study was designed to determine the prevalence of inherited prothrombotic risk factors (Factor V Leiden (FV) G1691A and prothrombin G20210A mutations, TT677 genotype of the methylenetetrahydrofolate reductase (MTHFR), protein C, protein S, antithrombin deficiencies) in a population of children with ALL treated according to the FRALLE 2000 study Protocol (High Risk and Standard Risk groups). The study was performed in 5 French Centers including Amiens, Angers, Paris Trousseau, Rouen and Saint-Etienne. From December 2000 to March 2006, 354 children aged 1 to 18 years old were consecutively admitted for ALL and were enrolled in the FRALLE 2000 Protocol. Among them, 281 patients were investigated for hereditary prothrombotic defects at the time of ALL diagnosis. Informed parental consent was required for gene analysis. Abnormal test results for protein S (functional activity and free protein S antigen concentration), protein C and antithrombin were controlled on a second blood sample after induction. In the population studied, the prevalence of one established prothrombotic risk factor was 19,2%: the FV G1691A mutation was diagnosed in 10 patients (3.6%), all heterozygous, 10 patients (3.6%) showed the heterozygous prothrombin G20210A mutation, the TT677 MTHFR genotype was found in 34 children (12.7%), 1 patient showed protein C deficiency (0.4%). No antithrombin deficiency was detected. The prevalence of inherited protein S deficiency could not be evaluated because of missing data in the family medical history. Combined prothrombotic defects were found in 2 patients (0.71%): heterozygous FV G1691A mutation combined with heterozygous prothrombin G20210A mutation in 1 patient and combined with TT677 MTHFR genotype in the second patient. Except for TT677 MTHFR genotype, the prevalence of hereditary prothrombotic risk factors in children with ALL in France were found within the prevalence reported for children treated for ALL (table 1) and comparable to the prevalence in healthy Europeans (Junker et al. 1999, Margaglione et al 2001, Mueller et al. 2005). Comparison of the prevalence of inherited prothrombotic risk factors in children with ALL Country Population FV G1691A +/− ++ PT G20210A +/− +/+ MTHFR TT677 AT PC AT: antithrombin deficiency ; PC: protein C deficiency ; NE : non evaluated NowakGöttl et al 1999 (n=301) Germany ALL children 5.3% 0.3% 2% 0% 7.7% 0.7% 2.3% Mauz-Körholz et al. 2000 (n=108) Germany ALL children 5.6% 0% 2.8% 0% 5.6% 0% 2.7% Mitchell et al. 2002 (n=60) Canada ALL children 3.3% 0% 2% 0% NE NE NE Present study (n=281) France ALL children 3.6% 0% (n=277) 3.6% 0%(n=279) 2.7% (n=268) 0% 0.4%


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1595-1599 ◽  
Author(s):  
Ulrike Nowak-Göttl ◽  
Cornelia Wermes ◽  
Ralf Junker ◽  
Hans-Georg Koch ◽  
Rosmarie Schobess ◽  
...  

Abstract The reported incidence of thromboembolism in children with acute lymphoblastic leukemia (ALL) treated with L-asparaginase, vincristine, and prednisone varies from 2.4% to 11.5%. The present study was designed to prospectively evaluate the role of the TT677 methylenetetrahydrofolate reductase (MTHFR) genotype, the prothrombin G20210A mutation, the factor V G1691A mutation, deficiencies of protein C, protein S, antithrombin, and increased lipoprotein (a) concentrations in leukemic children treated according to the ALL-Berlin-Frankfurt-Muenster (BFM) 90/95 study protocols with respect to the onset of vascular events. Three hundred and one consecutive leukemic children were enrolled in this study. Fifty-five of these 301 subjects investigated had one established single prothrombotic risk factor: 20 children showed the TT677 MTHFR genotype; 5 showed the heterozygous prothrombin G20210A variant; 11 were carriers of the factor V G1691A mutation (heterozygous, n = 10; homozygous, n = 1); 4 showed familial protein C, 4 protein S, and 2 antithrombin type I deficiency; 9 patients were suffering from familially increased lipoprotein (a) [Lp(a)] concentrations (>30 mg/dL). In addition, combined prothrombotic defects were found in a further 10 patients: the FV mutation was combined with the prothrombin G20210A variant (n = 1), increased Lp(a) (n = 3), protein C deficiency (n = 1), and homozygosity for the C677T MTHFR gene mutation (n = 1). Lp(a) was combined with protein C deficiency (n = 2) and the MTHFR TT 677 genotype (n = 2). Two hundred eighty-nine of the 301 patients were available for thrombosis-free survival analysis. In 32 (11%) of these 289 patients venous thromboembolism occurred. The overall thrombosis-free survival in patients with at least one prothrombotic defect was significantly reduced compared with patients without a prothrombotic defect within the hemostatic system (P < .0001). In addition, a clear-cut positive correlation (P < .0001) was found between thrombosis and the use of central lines. However, because the prothrombotic defects diagnosed in the total childhood population studied were all found within the prevalences reported for healthy Caucasian individuals, the interaction between prothrombotic risk factors, ALL treatment, and further environmental factors is likely to cause thrombotic manifestations.


2000 ◽  
Vol 83 (06) ◽  
pp. 840-843 ◽  
Author(s):  
Christine Mauz-Körholz ◽  
Ralf Junker ◽  
Ulrich Göbel ◽  
Ulrike Nowak-Göttl

SummaryHereditary prothrombotic risk factors have been shown to increase the risk of venous thrombosis in children treated with the combination of E. coli asparaginase and steroids. In the present study the role of prothrombotic risk factors in children with ALL treated according to the COALL study protocol was investigated in 108 consecutively recruited childhood patients. The prevalence rates of prothrombotic risk factors [factor V G1691A mutation, the prothrombin G20210A variant, the TT677 methylenetetrahydrofolate reductase genotype, deficiencies of protein C, protein S, antithrombin, elevated lipoprotein (a)] in this cohort were within the range reported for healthy Caucasians, and comparable to previously reported data for other leukemic patients. Venous thromboembolism occurred in 3 of the 108 children (induction n = 1; reinduction n = 2: 2.8%), and none of these children carried a prothrombotic risk factor. The results of the present study, suggest that the role of hereditary and acquired disturbances of coagulation in the development of thromboses might depend on the treatment regimen.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1595-1599 ◽  
Author(s):  
Ulrike Nowak-Göttl ◽  
Cornelia Wermes ◽  
Ralf Junker ◽  
Hans-Georg Koch ◽  
Rosmarie Schobess ◽  
...  

The reported incidence of thromboembolism in children with acute lymphoblastic leukemia (ALL) treated with L-asparaginase, vincristine, and prednisone varies from 2.4% to 11.5%. The present study was designed to prospectively evaluate the role of the TT677 methylenetetrahydrofolate reductase (MTHFR) genotype, the prothrombin G20210A mutation, the factor V G1691A mutation, deficiencies of protein C, protein S, antithrombin, and increased lipoprotein (a) concentrations in leukemic children treated according to the ALL-Berlin-Frankfurt-Muenster (BFM) 90/95 study protocols with respect to the onset of vascular events. Three hundred and one consecutive leukemic children were enrolled in this study. Fifty-five of these 301 subjects investigated had one established single prothrombotic risk factor: 20 children showed the TT677 MTHFR genotype; 5 showed the heterozygous prothrombin G20210A variant; 11 were carriers of the factor V G1691A mutation (heterozygous, n = 10; homozygous, n = 1); 4 showed familial protein C, 4 protein S, and 2 antithrombin type I deficiency; 9 patients were suffering from familially increased lipoprotein (a) [Lp(a)] concentrations (>30 mg/dL). In addition, combined prothrombotic defects were found in a further 10 patients: the FV mutation was combined with the prothrombin G20210A variant (n = 1), increased Lp(a) (n = 3), protein C deficiency (n = 1), and homozygosity for the C677T MTHFR gene mutation (n = 1). Lp(a) was combined with protein C deficiency (n = 2) and the MTHFR TT 677 genotype (n = 2). Two hundred eighty-nine of the 301 patients were available for thrombosis-free survival analysis. In 32 (11%) of these 289 patients venous thromboembolism occurred. The overall thrombosis-free survival in patients with at least one prothrombotic defect was significantly reduced compared with patients without a prothrombotic defect within the hemostatic system (P < .0001). In addition, a clear-cut positive correlation (P < .0001) was found between thrombosis and the use of central lines. However, because the prothrombotic defects diagnosed in the total childhood population studied were all found within the prevalences reported for healthy Caucasian individuals, the interaction between prothrombotic risk factors, ALL treatment, and further environmental factors is likely to cause thrombotic manifestations.


2005 ◽  
Vol 93 (05) ◽  
pp. 867-871 ◽  
Author(s):  
Manuela Krause ◽  
Barbara Sonntag ◽  
Robert Klamroth ◽  
Achim Heinecke ◽  
Carola Scholz ◽  
...  

SummaryFrom 1998 to 2003, 133 Caucasian women aged 17–40 years (median 29 years) suffering from unexplained recurrent miscarriage (uRM) were consecutively enrolled. In patients and 133 age-matched healthy controls prothrombotic risk factors (factor V (FV) G1691A, factor II (FII) G20210A, MTHFR T677T, 4G/5G plasminogen activator inhibitor (PAI)-1, lipoprotein (Lp) (a), protein C (PC), protein S (PS), antithrombin (AT), antiphospholipid/anticardiolipin (APA/ACA) antibodies) as well as associated environmental conditions (smoking and obesity) were investigated. 70 (52.6%) of the patients had at least one prothrombotic risk factor compared with 26 control women (19.5%; p<0.0001). Body mass index (BMI; p=0.78) and smoking habits (p=0.44) did not differ significantly between the groups investigated. Upon univariate analysis the heterozygous FV mutation, Lp(a) > 30 mg/dL, increased APA/ACA and BMI > 25 kg/m2 in combination with a prothrombotic risk factor were found to be significantly associated with uRM. In multivariate analysis, increased Lp(a) (odds ratio (OR): 4.7/95% confidence interval (CI): 2.0–10.7), the FV mutation (OR:3.8/CI:1.4–10.7), and increased APA/ACA (OR: 4.5/CI: 1.1–17.7) had independent associations with uRM.


2005 ◽  
Vol 94 (07) ◽  
pp. 88-92 ◽  
Author(s):  
Christoph Härtel ◽  
Sören von Otte ◽  
Julia Koch ◽  
Peter Ahrens ◽  
Evelyn Kattner ◽  
...  

SummaryClinical trials evaluating the potential benefit of anticoagulant treatment in pregnant women with inherited thrombophilia are based on the observation that a genetic predisposition to thrombosis is associated with frequent abortions and preterm birth. It was the aim of our study to delineate the impact of genetic polymorphisms with prothrombotic and antithrombotic effects on the occurrence of preterm birth in a large cohort of very-low-birth-weight (VLBW)-infants and their mothers. We examined the factor V Leiden and the prothrombin G20210A mutation, the factor VII 121del/ins and the factor XIII Val34Leu polymorphism in preterm very-low-birth-weight (VLBW, n=593) and term-born-infants (n=278) and their mothers (n=785).The primary outcome was preterm vs. term birth. From all polymorphisms tested, the maternal factor VII-121del/ins polymorphism (26.2 vs. 17.6 %; p=0.009) and the infant’s factor VII-121del/ins polymorphism (29.0 vs. 20.0 %; p=0.009) were more frequent in singletonVLBW and their mothers compared to term infants and their mothers. Furthermore, the frequency of the factor XIII-Val34Leu polymorphism was significantly lower in singleton VLBW than in term infant controls (5.1 vs. 9.6%, p=0.025). In a multivariate regression analysis, previous preterm delivery (OR=3.8, 95% CI: 1.7–8.4), the maternal carrier status of the factor-VII-121del/ins polymorphism (OR=1.7, 95% CI: 1.12–2.5, p=0.007) and the lower frequency of infant’s factor-XIII-Val34Leu polymorphism (OR=0.53; 95% CI: 0.29–0.96; p=0.038) were found to be independently associated with preterm delivery. InVLBW mothers with pathological CTG as cause of preterm delivery, the frequency of factor V Leiden mutation was significantly increased compared to VLBW mothers without pathological CTG (14.1 vs. 6.1%, p=0.01).The investigated haemostasis gene polymorphisms have a much lower impact on subsequent preterm delivery than known risk factors such as previous preterm birth. The reported association of the factor-VII-121del/ins polymorphism on preterm delivery and its clinical relevance needs to be further elucidated.


2016 ◽  
Vol 23 (2) ◽  
pp. 105-115 ◽  
Author(s):  
S. Moussaoui ◽  
P. Saussoy ◽  
J. Ambroise ◽  
J. P. Defour ◽  
R. Zouitene ◽  
...  

Many genetic risk factors have been identified for causing venous thromboembolism (VTE). Most of them affect the function of natural anticoagulant pathways, particularly the protein C system, although recent studies suggest a role of components of the hematopoietic pathway in the etiology of venous thrombosis. In this case–control study, we aimed to determine the frequency of prothrombin G20210A and factor V Leiden (FVL) G1691A polymorphisms and protein C, protein S, and antithrombin III deficiencies in the East Algerian population and to investigate whether these genetic factors are associated with VTE. On the other hand, our study tends to evaluate the status of JAK2V617F and calreticulin (CALR) mutations among these cases. The participants consisted of 121 cases with VTE and 146 healthy controls. Polymorphisms of FVL G1691A and prothrombin G20210A were genotyped by polymerase chain reaction (PCR) restriction fragment length polymorphism. JAK2-V617F and calreticulin mutations were analyzed by quantitative PCR and PCR followed by capillary electrophoresis sequencing, respectively. Protein C, protein S, and antithrombin levels were determined and then hereditary deficiencies were identified. Of all cases and controls, none was a carrier of the antithrombin III deficiency, prothrombin gene G20210A, and CALR mutations. Only 1 case reported having a positive JAK2 mutation (mutant allele burden was 15%). The FVL mutation (GA/AA) was found in 14 (11.6%) cases and 2 (1.4%) controls and it was significantly different between both the groups ( P = .001). Deficiencies of protein S and protein C were detected in 17 (18.8%) cases. The univariate analysis resulted in a significant impact of FVL (odds ratio [OR] = 9.4, 95% confidence interval [CI] = 2.1-42.3; P = .003) and of protein S deficiency (OR = 16.9, 95% CI =2.1-132.8, P = .007) on the VTE status. Both factors stayed significant after adjustment for sex and age. The OR of the protein C deficiency was slightly elevated (OR = 6.4, 95% CI = 0.7-55.5), but it did not reach the level of statistical significance ( P = .091), and it was therefore not considered as a risk factor. In conclusion, coagulant factor V gene G1691A mutation and protein S deficiency constitute important genetic risk factors in patients with VTE in Eastern Algeria. The somatic mutation of JAK2 V617F and CALR mutations are less frequent causes of VTE, thus routine testing for these mutations is not recommended.


1999 ◽  
Vol 82 (08) ◽  
pp. 662-666 ◽  
Author(s):  
Sandra J. Hasstedt ◽  
Mark F. Leppert ◽  
George L. Long ◽  
Edwin G. Bovill

IntroductionNearly 150 years ago, Virchow postulated that thrombosis was caused by changes in the flow of blood, the vessel wall, or the composition of blood. This concept created the foundation for subsequent investigation of hereditary and acquired hypercoagulable states. This review will focus on an example of the use of modern genetic epidemiologic analysis to evaluate the multigenic pathogenesis of the syndrome of juvenile thrombophilia.Juvenile thrombophilia has been observed clinically since the time of Virchow and is characterized by venous thrombosis onset at a young age, recurrent thrombosis, and a positive family history for thrombosis. The pathogenesis of juvenile thrombophilia remained obscure until the Egeberg observation, in 1965, of a four generation family with juvenile thrombophilia associated with a heterozygous antithrombin deficiency subsequently identified as antithrombin Oslo (G to A in the triplet coding for Ala 404).1,2 The association of a hereditary deficiency of antithrombin III with thrombosis appeared to support the hypothesis, first put forward by Astrup in 1958, of a thrombohemorrhagic balance.3 He postulated that there is a carefully controlled balance between clot formation and dissolution and that changes in conditions, such as Virchow’s widely encompassing triad, could tip the balance toward thrombus formation.The importance of the thrombohemorrhagic balance in hypercoagulable states has been born out of two lines of investigation: evidence supporting the tonic activation of the hemostatic mechanism and the subsequent description of additional families with antithrombin deficiency and other genetically abnormal hemostatic proteins associated with inherited thrombophilia. Assessing the activation of the hemostatic mechanism in vivo is achieved by a variety of measures, including assays for activation peptides generated by coagulation enzyme activity. Activation peptides, such as prothrombin fragment1+2, are measurable in normal individuals, due to tonic hemostatic activity and appear elevated in certain families with juvenile thrombophilia.4 In the past 25 years since Egeberg’s description of antithrombin deficiency, a number of seemingly monogenic, autosomal dominant, variably penetrant hereditary disorders have been well established as risk factors for venous thromboembolic disease. These disorders include protein C deficiency, protein S deficiency, antithrombin III deficiency, the presence of the factor V Leiden mutation, and the recently reported G20210A prothrombin polymorphism.5,6 These hereditary thrombophilic syndromes exhibit considerable variability in the severity of their clinical manifestations. A severe, life-threatening risk for thrombosis is conferred by homozygous protein C or protein S deficiency, which if left untreated, leads to death.7,8 Homozygous antithrombin III deficiency has not been reported but is also likely to be a lethal condition. Only a moderate risk for thrombosis is conferred by the homozygous state for factor V Leiden or the G20210A polymorphism.9,10 In contrast to homozygotes, the assessment of risk in heterozygotes, with these single gene disorders, has been complicated by variable clinical expression in family members with identical genotypes.11 Consideration of environmental interactions has not elucidated the variability of clinical expression. Consequently, it has been postulated that more than one genetic risk factor may co-segregate with a consequent cumulative or synergistic effect on thrombotic risk.12 A number of co-segregating risk factors have been described in the past few years. Probably the best characterized interactions are between the common factor V Leiden mutation, present in 3% to 6% of the Caucasian population,13,14 and the less common deficiencies of protein C, protein S, and antithrombin III. The factor V Leiden mutation does not, by itself, confer increased risk of thrombosis. The high prevalence of the mutation, however, creates ample opportunity for interaction with other risk factors when present.The G20210A prothrombin polymorphism has a prevalence of 1% to 2% in the Caucasian population and, thus, may play a similar role to factor V Leiden. A number of small studies have documented an interaction of G20210A with other risk factors.15-17 A limited evaluation of individuals with antithrombin III, protein C, or protein S deficiency revealed a frequency of 7.9% for the G20210A polymorphism, as compared to a frequency of 0.7% for controls.18 The G20210A polymorphism was observed in only 1 of the 6 protein C-deficient patients.18 In the present state, the elucidation of risk factors for venous thromboembolic disease attests to the effectiveness of the analytical framework constructed from the molecular components of Virchow’s triad, analyzed in the context of the thrombohemorrhagic balance hypothesis. Two investigative strategies have been used to study thromobophilia: clinical case-control studies and genetic epidemiologic studies. The latter strategy has gained considerable utility, based on the remarkable advances in molecular biology over the past two decades. Modern techniques of genetic analysis of families offer important opportunities to identify cosegregation of risk factors with disease.19 The essence of the genetic epidemiologic strategy is the association of clinical disease with alleles of specific genes. It is achieved either by the direct sequencing of candidate genes or by demonstration of linkage to genetic markers.


2008 ◽  
Vol 28 (01/02) ◽  
pp. 16-20 ◽  
Author(s):  
K. Kurnik ◽  
A. Krümpel ◽  
M. Stoll ◽  
U. Nowak-Göttl

SummaryVenous thromboembolism (VTE) is a rare disease that is being increasingly diagnosed and recognized in paediatrics in the past decade, usually as a secondary complication of primary severe underlying diseases. Apart from acquired thrombophilic risk factors, such as lupus anticoagulants, inherited thrombophilias (IT) have been established as risk factors for venous thromboembolic events in adults. In children with idiopathic VTE and in paediatric populations in which thromboses were associated with underlying medical diseases, IT have been described as additional prothrombotic risk factors. Follow-up data for VTE recurrence in children are available and suggest a recurrence rate of approximately 3% in neonates and 8% in other children. Here we present a review of the impact of IT on early onset of VTE and recurrence in children. Statistically significant associations between the IT traits investigated, e.g. factor V G1691A, factor II G20210A, protein C-, protein S-, antithrombin deficiency, elevated lipoprotein (a), combined IT and VTE onset were reported. In addition, statistically significant associations with recurrent VTE were calculated for protein S-, antithrombin-deficiency, and the factor II variant and combined IT. The absolute risk increase for VTE recurrence associated with IT ranged from 9.8 % for children carrying the factorII variant to 26% and 29% in children with combined IT and protein S-deficiency, respectively. Data obtained gave evidence that the detection of IT is clinically meaningful in children with VTE and underlines the importance of a paediatric thrombophilia screening program. Based on these data treatment algorithms have to be discussed.


2020 ◽  
Vol 3 (1) ◽  
pp. 67-69
Author(s):  
Sayyora Sayfutdinova ◽  

To study the impact of genetic variants biochemically associated with hemostasis (Leiden factor V, prothrombin G20210A and factor II) on a large number of children born with low birth weight


Sign in / Sign up

Export Citation Format

Share Document