scholarly journals The risk of recurrent cholesteatoma after radical mastoidectomy reduction with alloplastic osteoconductive bone replacement material

2018 ◽  
Author(s):  
R Stumpf
2019 ◽  
Vol 40 (4) ◽  
pp. e415-e423 ◽  
Author(s):  
Anne Kluge ◽  
Marcus Neudert ◽  
Christiane Kunert-Keil ◽  
Susen Lailach ◽  
Thomas Zahnert ◽  
...  

Author(s):  
Kusuma Eriwati Yosi ◽  
Arsista Dede ◽  
Triaminingsih Siti ◽  
Sunarso

Introduction: Carbonate apatite type B (C-Ap) has been used as a bone replacement material because of its osteoconductive properties. Clinically, the pores formed in bone replacement material aid in cell mobility and nutrient supply, thereby increasing the bone regeneration ability. CO32- ions found in this material are useful for maintaining a stable physiological environment in the bone in order for it to be easily absorbed by osteoclasts. Porous C-Ap type B is formed using the dissolution–precipitation method by immersing porous anhydrous CaSO4 in a mixture of carbonate and phosphate solutions. Purpose: The present study aimed to evaluate the effect of immersion ofCaSO4using the dissolution–precipitation method on the formation of porous C-Ap type B with calcium sulfate precursor hemihydrate. Method: Porous C-Ap type B was produced usinga mixture of calcium sulfate hemihydrate precursors with 50 wt% polymethylmethacrylate (PMMA) porogen and distilled water. After hardening, the calcium sulfate dihydrate containing PMMA was burned in an oven at 700°C for 4 h to remove the PMMA. The specimen was immersed in a mixture of sodium phosphate (Na3PO4) and sodium carbonate (Na2CO3) for 6, 12, and 24 h. Phase testing through X-ray diffraction (XRD) using CuKα radiation at 40 kV and 40 mA was performed. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR, Thermo Fisher Scientific, Waltham, Massachusetts, USA) was used for detecting the functional groups of CO32- and PO42-. Results: XRD results showed the formation of C-Ap at 6 and 12 h, but the anhydrous CaSO4 phase remained; alternatively, this phase was absent after 24 h of immersion phase andFTIR showed the presence of the functional groups of CO32- compounds. Conclusion: Porous C-Ap type B can be formed from CaSO4 precursors after 24 h of immersion using the dissolution–precipitation method.


1990 ◽  
Vol 4 (6) ◽  
pp. 757-762 ◽  
Author(s):  
C.E. Hastings ◽  
S.A. Martin ◽  
J.R. Heath ◽  
D.E. Mark ◽  
J.L. Mansfield ◽  
...  

2017 ◽  
Author(s):  
Berit Müller

As today’s synthetic bone implants fulfil the requirements for the repair of bone defects only in part continuous research for their improvement is ongoing. This work aims at the fabrication of bone replacement materials with bone-like properties regarding composition, structure, mechanical stability, and resorbability. As appropriate fabrication method, the slurry-based freeze gelation process was chosen. It allows the direct incorporation of active bio-relevant compounds, such as proteins, during scaffold processing. Moreover, the process enables the fabrication of complex-shaped and open-porous scaffolds. As principal components for the scaffolds calcium phosphate and protein were selected as they are biocompatible and resorbable. This work analyses the interaction between calcium phosphate and protein in suspension and investigates the suitability of the fabricated calcium phosphate/protein scaffolds as bone replacement material and drug release depot. Table of Contents SUMMARY ...


2019 ◽  
Vol 5 (1) ◽  
pp. 178-184 ◽  
Author(s):  
David Greenspan

Abstract In 1969, fifty years ago, a young professor of ceramic engineering created a 4-component glass to be used as a bone replacement material. That material became known as “Bioglass” and more generally as a class of materials known as bioactive glass. Those first experiments conducted by Dr. Larry Hench completely shifted the paradigm of how the biomaterials and medical communities look at the interactions between inorganic materials and tissues in the body. This article will touch on just a few highlights of the development of bioactive glasses and relate those to the concepts of bioactivity and tissue bonding.


2020 ◽  
Vol 840 ◽  
pp. 305-310
Author(s):  
Erlina Sih Mahanani ◽  
Indra Bachtiar ◽  
Ika Dewi Ana

Porosity and interconnectivity play an important role in the success of tissue engineering because it affects cells to live and grow. Coral has been used as a bone replacement material because the structures resemble bone and have mechanical bone properties. In this study, the synthetic coral scaffold was developed to mimic the natural coral. This study aims to investigate the porosity of the scaffold and its biocompatibility while it is attached to human gingival cells. Synthetic coral scaffold in various compositions were prepared, porosity percentage measurement and human gingival cell attachment test were done. An optimum ratio of the scaffold with gelatin: CaCO3, having the highest porosity and cell attachment is obtained in 5:5. The result of this study presented that synthetic coral scaffold could provide the microenvironment to cells for life because it is supported by the highest percentage of porosity.


1997 ◽  
Vol 111 (12) ◽  
pp. 1130-1136 ◽  
Author(s):  
G. Geyer ◽  
S. Dazert ◽  
J. Helms

AbstractThe hybrid bone-substitute ionomeric cement is suitable for restoring the original anatomy of the posterior canal wall. During a four-year period the posterior meatal wall was rebuilt with ionomeric cement in 74 patients. The canal wall was totally rebuilt in38 patients, two-thirds rebuilt in 22 cases, and one-third rebuilt in14 cases. On the meatal side, the canal wall was covered by a musculo-periosteal (Palva) flap. In the majority of cases, the drum was closed with (cartilage)-perichondrium. Revisions were performed in 27 patients (due partially to cholesteatoma, and/or poor visualization of radical mastoidectomy cavities). The ears were non-infected at thetime of operation.Permanent epithelialization of the bone replacement material was achieved in 57 cases, with secondary closure of a cutaneous defect of the meatal wall being required in six cases. The auditory canal wall had to be removed in 17 patients owing to deficient soft-tissue coverage, persistent inflammation, and/or partial adhesive processes with development of cholesteatoma. In terms of surgical technique, utilization of the material over a follow-up period of maximally seven years proved it to be a sophisticated procedure for reconstructing themeatal wall. Despite the finesse of the surgical technique employed, the overall failure rate of 31 per cent was inadmissibly high. Implantation of the material should therefore be restricted to middle ears with permanent ventilation and no trace of infection.


Sign in / Sign up

Export Citation Format

Share Document