ADDITIVE EFFECT OF DILTIAZEM (DIL) ON THE INHIBITION OF PLATELET AGGREGATION PRODUCED BY ASPIRIN (ASA).

1987 ◽  
Author(s):  
R Altman ◽  
A Scazziota ◽  
S Windor ◽  
C A Dujovne

Platelet activation in vivo occurs by the action of several stimuli. It is generally agreed that actives products of arachidonic acid derived via the cyclooxy-genase pathway can stimulate platelet aggregation. ASA decrease thromboxane A2 generation and thereby inhibit platelet aggregation produced by AA and, partially, by others agonists. Nevertheless, the antiaggregating effect of ASA can be overcome by the conjointly activity of arachidonic acid(AA) and platelet activating factor (PAF). The inhibition of this cooperative aggregating effect can be important in platelet function suppressive therapy. The effect of DIL was tested in this sys tern. DIL was added in vitro to platelet rich plasma oS talned from volunteers before and after ASA(100mg/dayT intake for 7 days. DIL (2ug/ml) inhibited 50% platelet aggregation induced by AA (0.75mM) in non aspiri-nated volunteers. At even lower concentrations of DIL (0.4-lug/ml) an inhibition of aggregation induced by 300nM of PAF was also observed. After ASA, no aggregation by AA, only a first wave followed by disaggregation when PAF (30nM) was used and a full response when this pair of agonists were added together was obtained. DIL (0.lug/ml) added in vitro, produced significant inhibition of the synergism.The effect in vivo of DIL plus low dose of ASA was also explored. In vivo administration of therapeutic dose of DIL (60mg T.I.D.) and low dose of ASA (75-100 mg/day), prevented the synergistic activity of AA plus PAF on platelet aggregation. In conclusion, DIL may enhance the effectiveness of low dose of ASA in the prevention of arterial thromboembolism.

2004 ◽  
Vol 92 (07) ◽  
pp. 89-96 ◽  
Author(s):  
David Payne ◽  
Chris Jones ◽  
Paul Hayes ◽  
Sally Webster ◽  
A. Naylor ◽  
...  

SummaryThe majority of patients who suffer peri-operative thromboembolic complication while undergoing vascular procedures do so despite taking aspirin. This study examined the antiplatelet effect of aspirin during surgery in patients undergoing carotid endarterectomy (CEA). Fifty patients undergoing CEA were standardised to 150 mg aspirin daily for ≥2 weeks. Platelet aggregation in response to arachidonic acid (AA) was measured in platelet rich plasma prepared from blood taken prior to, during, and at the end of surgery. Spontaneous platelet aggregation was also studied, as was the role of physiological agonists (ADP, collagen, thrombin, and epinephrine) in mediating the in vivo and in vitro responses to AA. Eighteen patients undergoing leg angioplasty, also on 150 mg aspirin, without general anaesthesia, served as a control group. In the CEA patients aggregation induced by AA (5 mM) increased significantly from 7.6 ± 5.5% pre-surgery to 50.8 ± 29.5% at the end of surgery (p <0.0001). Aggregation to AA was even greater in samples taken mid-surgery from a sub-set of patients (73.8 ± 7.2%; p = 0.0001), but fell to 45.9 ± 7.4% by the end of surgery. The increased aggregation in response to AA was not due to intra-operative release of physiological platelet agonists since addition of agents that block/neutralise the effects of ADP (apyrase; 4 µg/ml), thrombin (hirudin; 10 units/ml), or epinephrine (yohimbine; 10 µM/l) to the samples taken at the end of surgery did not block the increased aggregation.The patients undergoing angioplasty also showed a significant rise in the response to AA (5 mM), from 5.6 ± 5.5% pre-angioplasty to 32.4 ± 24.9% at the end of the procedure (p <0.0001), which fell significantly to 11.0 ± 8.1% 4 hours later. The antiplatelet activity of aspirin, mediated by blockade of platelet arachidonic acid metabolism, diminished significantly during surgery, but was partially restored by the end of the procedure without additional aspirin treatment.This rapidly inducible and transient effect may explain why some patients undergoing cardiovascular surgery remain at risk of peri-operative stroke and myocardial infarction.


1988 ◽  
Vol 74 (5) ◽  
pp. 491-497 ◽  
Author(s):  
D. Sils ◽  
S. E. Rodgers ◽  
J. V. Lloyd ◽  
K. M. Wilson ◽  
D. M. Siebert ◽  
...  

1. The aspirin concentrations previously reported to inhibit platelet aggregation in vitro (40–500 μmol/l) are much greater than those required in vivo in man (5 μmol/l). 2. Human platelet-rich plasma was incubated with buffer or various aspirin concentrations at 37°C for up to 4.5 h. Platelet aggregation and thromboxane generation were measured in response to collagen (0.4–6.3 μg/ml) and adenosine 5′-pyrophosphate (0.5–4 μmol/l). 3. The concentration of aspirin needed to inhibit platelet aggregation in response to a critical concentration of aggregating agent (lowest concentration to cause greater than 50% aggregation) was lower than that required for higher concentrations of aggregating agent. 4. With more prolonged incubation times with aspirin, lower concentrations of aspirin inhibited platelet aggregation. 5. Inhibition of platelet aggregation and thromboxane formation by 10 μmol/l aspirin was maximal by 90 min. There was progressive inhibition by 3 μmol/l aspirin during incubation for 270 min. By the end of this time there was also significant inhibition by 1 μmol/l aspirin. 6. The apparent discrepancy between inhibitory aspirin concentrations in vivo and those observed in vitro in previous studies appears to have been resolved by extending the incubation time of platelets with low aspirin concentrations, thus mimicking the conditions in vivo.


1998 ◽  
Vol 79 (02) ◽  
pp. 383-388 ◽  
Author(s):  
J. P. Herault ◽  
V. Peyrou ◽  
P. Savi ◽  
A. Bernat ◽  
J. M. Herbert

SummaryThe effect of SR121566A, a new non-peptide GP IIb-IIIa antagonist was studied in vitro with regard to thrombin generation in platelet rich plasma and in vivo on stasis-induced venous thrombosis in the rabbit. SR121566A inhibited ADP-, arachidonic acid- and collagen-induced human platelet aggregation with IC50 values of 46 ± 7.5, 56 ± 6 and 42 ± 3 nM, respectively. In the same experimental conditions, SR121566A strongly inhibited thrombin generation triggered by low concentrations of tissue factor. SR121566A reduced in a dose-dependent manner both the area under the curve and the thrombin peak concentration but did not affect the lag phase (defined as the time until 10 nM thrombin was generated). Aspirin (100 µg/ml) did not affect thrombin generation.One hour after intravenous administration to rabbits, SR121566A exhibited a potent ex vivo inhibitory effect against ADP-, arachidonic acid- and collagen-induced platelet aggregation. The ID50 were 0.6 ± 0.25, 0.7 ± 0.08 and 0.13 ± 0.08 mg/kg, respectively. The ability of aspirin and SR121566A to affect venous stasis was determined in a stasis-induced venous thrombosis model in rabbits under high and low thrombogenic challenges. While aspirin was ineffective in both conditions, SR121566A significantly inhibited thrombus formation under low thrombogenic challenge demonstrating for the first time that a potent non-peptide platelet GP IIb-IIIa antagonist inhibits thrombin generation in vivo and exhibits a strong antithrombotic effect with regard to stasis-induced venous thrombosis. These results therefore confirm the existence of a close relationship between platelet activation and thrombin generation leading to blood coagulation but also emphasise the key role of platelets in the development of venous thrombosis, most likely through activation of the GP IIb-IIIa complex.


1977 ◽  
Author(s):  
A. C. Carvalho ◽  
R. W. Colman ◽  
R. Vaillancourt ◽  
R. Cabrai ◽  
R. Anaya

Diazepam (Valium) is one of the most prescribed medications in the world. Patients on Diazepam may need platelet function evaluation. Therefore, a study of its effect on both in vivo and in vitro platelet function was undertaken in 8 normal volunteers. Diazepam (10–40μg/ml) was incubated in vitro with platelet rich plasma (250,000/μl) at intervals of 15, 30, 60, 120, and 240 minutes followed by determination of platelet aggregation and 14C-serotonin release. Fifty percent inhibition of platelet aggregation and release by Diazepam was obtained at 1 hr with epinephrine (p<0.01) and at 2 hrs with ADP (p<0.01), but no significant effect was noted with collagen. The Diazepam inhibitory effect on platelet aggregation and release was overcome by high concentrations of aggregating agents, suggesting that its primary effect is not mediated by inhibition of prostaglandin synthesis.Following oral ingestion of 5mg of Diazepam, platelet aggregation and 14C-serotonin release were determined serially (2, 4, 8, 12, 24, and 48 hours) in the 8 normal subjects. After 8 hours, Diazepam inhibited ADP-induced aggregation and release by 39% (p<0.01) and epinephrine by 50% (p<0.01). No significant inhibition of collagen was observed. Forty-eight hours after Diazepam intake, platelet function returned to normal in all subjects.Our data show that Diazepam impairs both platelet aggregation and release in vitro and in vivo. Although the effect of Diazepam on in vivo hemostasis is still uncertain, our results suggest caution in the interpretation of platelet function testing in patients on this drug.


1973 ◽  
Vol 29 (02) ◽  
pp. 490-498 ◽  
Author(s):  
Hiroh Yamazaki ◽  
Itsuro Kobayashi ◽  
Tadahiro Sano ◽  
Takio Shimamoto

SummaryThe authors previously reported a transient decrease in adhesive platelet count and an enhancement of blood coagulability after administration of a small amount of adrenaline (0.1-1 µg per Kg, i. v.) in man and rabbit. In such circumstances, the sensitivity of platelets to aggregation induced by ADP was studied by an optical density method. Five minutes after i. v. injection of 1 µg per Kg of adrenaline in 10 rabbits, intensity of platelet aggregation increased to 115.1 ± 4.9% (mean ± S. E.) by 10∼5 molar, 121.8 ± 7.8% by 3 × 10-6 molar and 129.4 ± 12.8% of the value before the injection by 10”6 molar ADP. The difference was statistically significant (P<0.01-0.05). The above change was not observed in each group of rabbits injected with saline, 1 µg per Kg of 1-noradrenaline or 0.1 and 10 µg per Kg of adrenaline. Also, it was prevented by oral administration of 10 mg per Kg of phenoxybenzamine or propranolol or aspirin or pyridinolcarbamate 3 hours before the challenge. On the other hand, the enhancement of ADP-induced platelet aggregation was not observed in vitro, when 10-5 or 3 × 10-6 molar and 129.4 ± 12.8% of the value before 10∼6 molar ADP was added to citrated platelet rich plasma (CPRP) of rabbit after incubation at 37°C for 30 second with 0.01, 0.1, 1, 10 or 100 µg per ml of adrenaline or noradrenaline. These results suggest an important interaction between endothelial surface and platelets in connection with the enhancement of ADP-induced platelet aggregation by adrenaline in vivo.


1973 ◽  
Vol 30 (02) ◽  
pp. 315-326
Author(s):  
J. Heinz Joist ◽  
Jean-Pierre Cazenave ◽  
J. Fraser Mustard

SummarySodium pentobarbital (SPB) and three other barbituric acid derivatives were found to inhibit platelet function in vitro. SPB had no effect on the primary response to ADP of platelets in platelet-rich plasma (PRP) or washed platelets but inhibited secondary aggregation induced by ADP in human PRP. The drug inhibited both phases of aggregation induced by epinephrine. SPB suppressed aggregation and the release reaction induced by collagen or low concentrations of thrombin, and platelet adherence to collagen-coated glass tubes. The inhibition by SPB of platelet aggregation was readily reversible and isotopically labeled SPB did not become firmly bound to platelets. No inhibitory effect on platelet aggregation induced by ADP, collagen, or thrombin could be detected in PRP obtained from rabbits after induction of SPB-anesthesia.


1983 ◽  
Vol 50 (04) ◽  
pp. 852-856 ◽  
Author(s):  
P Gresele ◽  
C Zoja ◽  
H Deckmyn ◽  
J Arnout ◽  
J Vermylen ◽  
...  

SummaryDipyridamole possesses antithrombotic properties in the animal and in man but it does not inhibit platelet aggregation in plasma. We evaluated the effect of dipyridamole ex vivo and in vitro on platelet aggregation induced by collagen and adenosine- 5’-diphosphate (ADP) in human whole blood with an impedance aggregometer. Two hundred mg dipyridamole induced a significant inhibition of both ADP- and collagen-induced aggregation in human blood samples taken 2 hr after oral drug intake. Administration of the drug for four days, 400 mg/day, further increased the antiplatelet effect. A significant negative correlation was found between collagen-induced platelet aggregation in whole blood and dipyridamole levels in plasma (p <0.001). A statistically significant inhibition of both collagen (p <0.0025) and ADP-induced (p <0.005) platelet aggregation was also obtained by incubating whole blood in vitro for 2 min at 37° C with dipyridamole (3.9 μM). No such effects were seen in platelet-rich plasma, even after enrichment with leukocytes. Low-dose adenosine enhanced in vitro inhibition in whole blood.Our results demonstrate that dipyridamole impedes platelet aggregation in whole blood by an interaction with red blood cells, probably involving adenosine.


1979 ◽  
Author(s):  
K.E. Sarji ◽  
J. Gonzalez ◽  
H. Hempling ◽  
J.A. Colwell

To determine whether Vitamin C might relate to the increased platelet sensitivity in the diabetic, we have measured levels of platelet Vitamin C and studied the effects of Vitamin C on platelet aggregation. Ascorbic acid levels in washed platelets from diabetics were significantly lower than from normals (4s.2±3 μg/1010 platelets vs. 2s.s±2 μg/1010 platelets, p<.001). The effects of ascorbic acid on platelet aggregation in vitro were studied by adding ascorbic acid in buffered solution (pH 7.35) prior to-aggregating agents. Ascorbic acid in platelet-rich plasma consistently inhibited platelet aggregation with threshold concentrations of ADP, epinephrine, and collagen. With washed platelets, ascorbic acid inhibited arachidonic, acid-induced aggregation. When platelets were incubated at 37°C for 10 minutes with varying concentrations of ascorbic acid, rewashed, and aggregation with arachidonic acid tested, aggregation was inhibited in a linear dose-dependent fashion. Oral ingestion of ascorbic acid (2 gm/day) for seven days by normal non-smoking males produced a marked inhibition of aggregation. In a similar study, platelets from an insulin-dependent diabetic showed no change in aggregation. These results suggest that platelet levels of ascorbic acid may relate to the hyperaggregat ion of platelets from diabetics.


1988 ◽  
Vol 59 (03) ◽  
pp. 383-387 ◽  
Author(s):  
Margaret L Rand ◽  
Marian A Packham ◽  
Raelene L Kinlough-Rathbone ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, did not affect the primary phase of ADP-induced aggregation of human or rabbit platelets, which is not associated with the secretion of granule contents. Potentiation by epinephrine of the primary phase of ADP-induced aggregation of rabbit platelets was also not inhibited by ethanol. However, ethanol did inhibit the secondary phase of ADP-induced aggregation which occurs with human platelets in citrated platelet-rich plasma and is dependent on the formation of thromboxane A2. Inhibition by ethanol of thromboxane production by stimulated platelets is likely due to inhibition of the mobilization of arachidonic acid from membrane phospholipids, as ethanol had little or no effect on aggregation and secretion induced by arachidonic acid or the thromboxane mimetic U46619. Rabbit platelet aggregation and secretion in response to low concentrations of collagen, thrombin, or PAF were inhibited by ethanol. Inhibition of the effects of thrombin and PAF was also observed with aspirin-treated platelets. Thus, in addition to inhibiting the mobilization of arachidonate for thromboxane formation that occurs with most agonists, ethanol can also inhibit aggregation and secretion through other effects on platelet responses.


2018 ◽  
Vol 1 (1) ◽  
pp. 01-03
Author(s):  
Mark I. M. Noble

Over many years, laboratory testing of platelet aggregability have been carried out in attempts to develop drugs that would prevent thrombosis in arteries. The problems encountered included the question of methodology. Blood samples have to be anticoagulated in order to study the platelets. Anti-coagulation with citrate and tests on derived platelet rich plasma did not correlate at all well with thrombus growth in the stenosed coronary arteries of experimental animals and citrate removes the calcium ions which are vital for platelet function. Anticoagulation with heparin also interfered with platelet function, so that now, hirudins are the preferred anticoagulant. However it was observed that if, instead of stimulating platelet aggregation with adrenaline or ADP, serotonin was applied to the preparation, very little aggregation took place in spite of serotonin 5HT2A antagonists being the most potent inhibitors of thrombus growth in experimental animals. Another indicator that primary platelet agggregation is not a predictor of in vivo efficacy was the finding that 5HT2A antagonism inhibited aggregate growth. In a stenosed artery the platelets are activated by increased shear stress and blood turbulence with release of platelet serotonin causing positive feedback activation of more platelets. At present, there does not seem to be a bench in vitro test that accurately predicts in vivo efficacy in stenosed artery occlusive thrombosis.


Sign in / Sign up

Export Citation Format

Share Document