BINDING OF FIBRINOGEN TO PLATELET GLYCOPROTEIN (GP) IIb/IIIa IS CRUCIAL FOR SHEAR-INDUCED PLATELET AGGREGATION

1987 ◽  
Author(s):  
Y Ikeda ◽  
M Murata ◽  
Y Araki ◽  
M Yamamoto ◽  
K Watanabe ◽  
...  

It is well known that human platelets can aggregate in vitro under certain shear stress without adding aggregating inducers. However, the mechanism of this shear-induced platelet aggregation has not been clarified yet. In this paper, we have investigated the role of fibrinogen and GP IIb/IIIa in shear-induced platelet aggregation. Citrated human platelet-rich plasma (PRP) was subjected to controlled shear stress levels in a polycarbonate cone and plate viscometer at 37°C for 2 minutes. After shearing the particle count was measured by an electronic particle counter. Particles with sizes from 3 to 20 μ cum were considered as single platelets. In unsheared PRP most of the particles were single platelets, but platelet doublets and platelet fragments larger than 3 μ cum were also counted. After exposure to shear rate of 3,600 - 9,000 sec−1 , the particle counts were decreased in a shear rate dependent manner, while LDH leakage from platelets was not significantly increased and 3H-serotonin release was 2-7%. Scanning electronmicroscopy clearly showed the presence of large platelet aggregates when the particle counts were decreased. Platelets from two patients with thrombasthenia and one patient with afibrinogenemia, however, failed to aggregate at a shear rate of 9,000 sec−1. Shear-induced aggregation was inhibited by monoclonal antibody to GPIIb/IIIa (1 μg/ml) and synthetic peptide, Arg-Gly-Asp-Ser, (1 mM). When fibrinogen was added to PRP from a patient with afibrinogenemia, shear-induced aggregation became evident as seen in normal platelets. Apyrase and hirudin showed no effect on shear-induced aggregation. Indomethacin (100 μM) and TXA2 synthetase inhibitor, OKY-046 (100 μM) markedly inhibited aggregation, while TXA2 competitive inhibitor, ONO-3708 (100 μM) exhibited only partial inhibition.Our results indicate that binding of fibrinogen to GPIIb/lIIa is also crucial for shear-induced platelet aggregation and that the exposure of fibrinogen receptor on GPIIb/IIIa may partially depend upon TXA2 synthesis in platelets.

1982 ◽  
Vol 48 (03) ◽  
pp. 301-306 ◽  
Author(s):  
Z Wang ◽  
J M Roberts ◽  
P G Grant ◽  
R W Colman ◽  
A D Schreiber

SummaryWe investigated the effect of the Chinese herb Injectio Salvia Miltiorrhizae (ISM) on human platelet function in vitro. ISM inhibited platelet aggregation and serotonin release induced by either ADP or epinephrine in a dose dependent manner. This effect of ISM was observed with both gel-filtered platelets (ID50 = 8–30 μg ISM/ml gel-filtered platelets) and platelets in plasma (ID50 = 400–900 μg ISM/ml of platelet-rich plasma). The active molecule(s) in ISM was heat stable, resistant to acid, base and proteolysis and fractionated on Sephadex 6-25 at MW ~ 280. ISM did not interact with the platelet α-adrenergic receptor, but increased cAMP in intact platelets. The results are consistent with the concept that ISM inhibition of platelet aggregation and release is mediated by an increase in platelet cAMP. The exact mechanism whereby ISM increases platelet cAMP appears to be that of inhibition of cyclic AMP phosphodiesterase. The effect of ISM on platelet function is one mechanism which might explain the therapeutic effect of ISM in experimental and clinical coronary artery disease.


1977 ◽  
Author(s):  
A. C. Carvalho ◽  
R. W. Colman ◽  
R. Vaillancourt ◽  
R. Cabrai ◽  
R. Anaya

Diazepam (Valium) is one of the most prescribed medications in the world. Patients on Diazepam may need platelet function evaluation. Therefore, a study of its effect on both in vivo and in vitro platelet function was undertaken in 8 normal volunteers. Diazepam (10–40μg/ml) was incubated in vitro with platelet rich plasma (250,000/μl) at intervals of 15, 30, 60, 120, and 240 minutes followed by determination of platelet aggregation and 14C-serotonin release. Fifty percent inhibition of platelet aggregation and release by Diazepam was obtained at 1 hr with epinephrine (p<0.01) and at 2 hrs with ADP (p<0.01), but no significant effect was noted with collagen. The Diazepam inhibitory effect on platelet aggregation and release was overcome by high concentrations of aggregating agents, suggesting that its primary effect is not mediated by inhibition of prostaglandin synthesis.Following oral ingestion of 5mg of Diazepam, platelet aggregation and 14C-serotonin release were determined serially (2, 4, 8, 12, 24, and 48 hours) in the 8 normal subjects. After 8 hours, Diazepam inhibited ADP-induced aggregation and release by 39% (p<0.01) and epinephrine by 50% (p<0.01). No significant inhibition of collagen was observed. Forty-eight hours after Diazepam intake, platelet function returned to normal in all subjects.Our data show that Diazepam impairs both platelet aggregation and release in vitro and in vivo. Although the effect of Diazepam on in vivo hemostasis is still uncertain, our results suggest caution in the interpretation of platelet function testing in patients on this drug.


Blood ◽  
1988 ◽  
Vol 72 (6) ◽  
pp. 1898-1903 ◽  
Author(s):  
MD Phillips ◽  
JL Moake ◽  
L Nolasco ◽  
N Turner

Abstract Shear stress activated platelets undergo aggregation in the presence of large or unusually large von Willebrand factor (vWF) multimers without the addition of ristocetin or any other exogenous chemical. This phenomenon may be analogous to the platelet aggregation that leads to thrombosis in the narrowed arteries and arterioles of patients with atherosclerosis or vasospasm. A triphenyl-methyl compound, aurin tricarboxylic acid (ATA), inhibits shear-induced, vWF-mediated platelet aggregation in platelet-rich plasma (PRP) in concentrations above 200 mumol/L and in buffer suspensions of washed platelets at a concentration of 0.1 mumol/L. In a concentration-dependent manner, ATA also inhibits ristocetin-induced, vWF-mediated platelet clumping in both fresh and formaldehyde-fixed platelet suspensions. This inhibition can be overcome by increasing the concentration of vWF, following the kinetics of first order competitive inhibition. ATA prevents the attachment to platelets of the largest vWF multimeric forms found in normal plasma and of the unusually large vWF multimers derived from endothelial cells. The rate of aggregation and degree of inhibition by ATA is not accounted for by the binding of ristocetin or calcium. Arachidonic acid- and adenosine diphosphate (ADP)-induced aggregation are not inhibited by ATA. Platelets incubated with ATA can be easily separated from the compound. However, ATA binds to large vWF multimeric forms and inhibits their ristocetin-induced interaction with platelet glycoprotein Ib. Because ATA also inhibits shear-induced, vWF-mediated platelet aggregation in vitro in the absence of ristocetin, it may be a useful prototype compound to impede the development of arterial thrombosis in vivo.


Blood ◽  
1988 ◽  
Vol 72 (6) ◽  
pp. 1898-1903 ◽  
Author(s):  
MD Phillips ◽  
JL Moake ◽  
L Nolasco ◽  
N Turner

Shear stress activated platelets undergo aggregation in the presence of large or unusually large von Willebrand factor (vWF) multimers without the addition of ristocetin or any other exogenous chemical. This phenomenon may be analogous to the platelet aggregation that leads to thrombosis in the narrowed arteries and arterioles of patients with atherosclerosis or vasospasm. A triphenyl-methyl compound, aurin tricarboxylic acid (ATA), inhibits shear-induced, vWF-mediated platelet aggregation in platelet-rich plasma (PRP) in concentrations above 200 mumol/L and in buffer suspensions of washed platelets at a concentration of 0.1 mumol/L. In a concentration-dependent manner, ATA also inhibits ristocetin-induced, vWF-mediated platelet clumping in both fresh and formaldehyde-fixed platelet suspensions. This inhibition can be overcome by increasing the concentration of vWF, following the kinetics of first order competitive inhibition. ATA prevents the attachment to platelets of the largest vWF multimeric forms found in normal plasma and of the unusually large vWF multimers derived from endothelial cells. The rate of aggregation and degree of inhibition by ATA is not accounted for by the binding of ristocetin or calcium. Arachidonic acid- and adenosine diphosphate (ADP)-induced aggregation are not inhibited by ATA. Platelets incubated with ATA can be easily separated from the compound. However, ATA binds to large vWF multimeric forms and inhibits their ristocetin-induced interaction with platelet glycoprotein Ib. Because ATA also inhibits shear-induced, vWF-mediated platelet aggregation in vitro in the absence of ristocetin, it may be a useful prototype compound to impede the development of arterial thrombosis in vivo.


1990 ◽  
Vol 63 (01) ◽  
pp. 112-121 ◽  
Author(s):  
David N Bell ◽  
Samira Spain ◽  
Harry L Goldsmith

SummaryThe effect of red blood cells, rbc, and shear rate on the ADPinduced aggregation of platelets in whole blood, WB, flowing through polyethylene tubing was studied using a previously described technique (1). Effluent WB was collected into 0.5% glutaraldehyde and the red blood cells removed by centrifugation through Percoll. At 23°C the rate of single platelet aggregtion was upt to 9× greater in WB than previously found in platelet-rich plasma (2) at mean tube shear rates Ḡ = 41.9,335, and 1,920 s−1, and at both 0.2 and 1.0 µM ADP. At 0.2 pM ADP, the rate of aggregation was greatest at Ḡ = 41.9 s−1 over the first 1.7 s mean transit time through the flow tube, t, but decreased steadily with time. At Ḡ ≥335 s−1 the rate of aggregation increased between t = 1.7 and 8.6 s; however, aggregate size decreased with increasing shear rate. At 1.0 µM ADP, the initial rate of single platelet aggregation was still highest at Ḡ = 41.9 s1 where large aggregates up to several millimeters in diameter containing rbc formed by t = 43 s. At this ADP concentration, aggregate size was still limited at Ḡ ≥335 s−1 but the rate of single platelet aggregation was markedly greater than at 0.2 pM ADP. By t = 43 s, no single platelets remained and rbc were not incorporated into aggregates. Although aggregate size increased slowly, large aggregates eventually formed. White blood cells were not significantly incorporated into aggregates at any shear rate or ADP concentration. Since the present technique did not induce platelet thromboxane A2 formation or cause cell lysis, these experiments provide evidence for a purely mechanical effect of rbc in augmenting platelet aggregation in WB.


1996 ◽  
Vol 75 (04) ◽  
pp. 655-660 ◽  
Author(s):  
Mario Mazzucato ◽  
Luigi De Marco ◽  
Paola Pradella ◽  
Adriana Masotti ◽  
Francesco I Pareti

SummaryPorcine von Willebrand factor (P-vWF) binds to human platelet glycoprotein (GP) lb and, upon stirring (1500 rpm/min) at 37° C, induces, in a dose-dependent manner, a transmembrane flux of Ca2+ ions and platelet aggregation with an increase in their intracellular concentration. The inhibition of P-vWF binding to GP lb, obtained with anti GP lb monoclonal antibody (LJ-Ib1), inhibits the increase of intracellular Ca2+ concentration ([Ca2+]i) and platelet aggregation. This effect is not observed with LJ-Ib10, an anti GP lb monoclonal antibody which does not inhibit the vWF binding to GP lb. An anti GP Ilb-IIIa monoclonal antibody (LJ-CP8) shown to inhibit the binding of both vWF and fibrinogen to the GP IIb-IIIa complex, had only a slight effect on the [Ca2+]i rise elicited by the addition of P-vWF. No inhibition was also observed with a different anti GP IIb-IIIa monoclonal antibody (LJ-P5), shown to block the binding of vWF and not that of fibrinogen to the GP IIb-IIIa complex. PGE1, apyrase and indomethacin show a minimal effect on [Ca2+]i rise, while EGTA completely blocks it. The GP lb occupancy by recombinant vWF fragment rvWF445-733 completely inhibits the increase of [Ca2+]i and large aggregates formation. Our results suggest that, in analogy to what is seen with human vWF under high shear stress, the binding of P-vWF to platelet GP lb, at low shear stress and through the formation of aggregates of an appropriate size, induces a transmembrane flux of Ca2+, independently from platelet cyclooxy-genase metabolism, perhaps through a receptor dependent calcium channel. The increase in [Ca2+]i may act as an intracellular message and cause the activation of the GP IIb-IIIa complex.


1983 ◽  
Vol 50 (04) ◽  
pp. 852-856 ◽  
Author(s):  
P Gresele ◽  
C Zoja ◽  
H Deckmyn ◽  
J Arnout ◽  
J Vermylen ◽  
...  

SummaryDipyridamole possesses antithrombotic properties in the animal and in man but it does not inhibit platelet aggregation in plasma. We evaluated the effect of dipyridamole ex vivo and in vitro on platelet aggregation induced by collagen and adenosine- 5’-diphosphate (ADP) in human whole blood with an impedance aggregometer. Two hundred mg dipyridamole induced a significant inhibition of both ADP- and collagen-induced aggregation in human blood samples taken 2 hr after oral drug intake. Administration of the drug for four days, 400 mg/day, further increased the antiplatelet effect. A significant negative correlation was found between collagen-induced platelet aggregation in whole blood and dipyridamole levels in plasma (p <0.001). A statistically significant inhibition of both collagen (p <0.0025) and ADP-induced (p <0.005) platelet aggregation was also obtained by incubating whole blood in vitro for 2 min at 37° C with dipyridamole (3.9 μM). No such effects were seen in platelet-rich plasma, even after enrichment with leukocytes. Low-dose adenosine enhanced in vitro inhibition in whole blood.Our results demonstrate that dipyridamole impedes platelet aggregation in whole blood by an interaction with red blood cells, probably involving adenosine.


1979 ◽  
Author(s):  
K.E. Sarji ◽  
J. Gonzalez ◽  
H. Hempling ◽  
J.A. Colwell

To determine whether Vitamin C might relate to the increased platelet sensitivity in the diabetic, we have measured levels of platelet Vitamin C and studied the effects of Vitamin C on platelet aggregation. Ascorbic acid levels in washed platelets from diabetics were significantly lower than from normals (4s.2±3 μg/1010 platelets vs. 2s.s±2 μg/1010 platelets, p<.001). The effects of ascorbic acid on platelet aggregation in vitro were studied by adding ascorbic acid in buffered solution (pH 7.35) prior to-aggregating agents. Ascorbic acid in platelet-rich plasma consistently inhibited platelet aggregation with threshold concentrations of ADP, epinephrine, and collagen. With washed platelets, ascorbic acid inhibited arachidonic, acid-induced aggregation. When platelets were incubated at 37°C for 10 minutes with varying concentrations of ascorbic acid, rewashed, and aggregation with arachidonic acid tested, aggregation was inhibited in a linear dose-dependent fashion. Oral ingestion of ascorbic acid (2 gm/day) for seven days by normal non-smoking males produced a marked inhibition of aggregation. In a similar study, platelets from an insulin-dependent diabetic showed no change in aggregation. These results suggest that platelet levels of ascorbic acid may relate to the hyperaggregat ion of platelets from diabetics.


1988 ◽  
Vol 59 (03) ◽  
pp. 383-387 ◽  
Author(s):  
Margaret L Rand ◽  
Marian A Packham ◽  
Raelene L Kinlough-Rathbone ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, did not affect the primary phase of ADP-induced aggregation of human or rabbit platelets, which is not associated with the secretion of granule contents. Potentiation by epinephrine of the primary phase of ADP-induced aggregation of rabbit platelets was also not inhibited by ethanol. However, ethanol did inhibit the secondary phase of ADP-induced aggregation which occurs with human platelets in citrated platelet-rich plasma and is dependent on the formation of thromboxane A2. Inhibition by ethanol of thromboxane production by stimulated platelets is likely due to inhibition of the mobilization of arachidonic acid from membrane phospholipids, as ethanol had little or no effect on aggregation and secretion induced by arachidonic acid or the thromboxane mimetic U46619. Rabbit platelet aggregation and secretion in response to low concentrations of collagen, thrombin, or PAF were inhibited by ethanol. Inhibition of the effects of thrombin and PAF was also observed with aspirin-treated platelets. Thus, in addition to inhibiting the mobilization of arachidonate for thromboxane formation that occurs with most agonists, ethanol can also inhibit aggregation and secretion through other effects on platelet responses.


1998 ◽  
Vol 80 (08) ◽  
pp. 326-331 ◽  
Author(s):  
Pierre Savi ◽  
Walter Jeske ◽  
Jeanine Walenga ◽  
Jean-Marc Herbert

SummaryHeparin-induced thrombocytopenia (HIT) is a common adverse effect of heparin therapy that carries a risk of serious thrombotic events. This condition is caused by platelet aggregation, which is mediated by anti-heparin/platelet factor 4 antibodies. Sera from patients with HIT in the presence of platelets, induced the expression of E-selectin, VCAM, ICAM-1 and tissue factor and the release of IL1β, IL6, TNFα and PAI-1 by human umbilical vein endothelial cells (HUVECs) in vitro and initiated platelet adhesion to activated HUVECs. These effects which occurred in a time-dependent manner were significant in the first 1-2 h of incubation and reached a maximum after 6 to 9 h. The GP IIb-IIIa receptor antagonist SR121566A which has been shown to block platelet aggregation induced by a wide variety of agonists including HIT serum/heparin, reduced in a dose-dependent manner the HIT serum/heparin-induced, platelet mediated expression and release of the above mentioned proteins. The IC50 for inhibition of HIT serum/ heparin-induced platelet dependent HUVEC activation by SR121566A was approximately 10-20 nM. ADP, but not serotonin release, also appeared to be involved as apyrase and ATPγS blocked platelet-dependent, HIT serum/heparin-induced cell surface protein expression and cytokine release by HUVECs. Increased platelet adherence to HIT serum/heparin-activated HUVECs was inhibited by SR121566A and, to a lesser extent, by apyrase and ATPγS, showing that platelet activation and release was at the origin of the HIT serum/heparin-induced expression of these proteins by HUVECs.Thus, sera from patients with HIT induced the expression of adhesive and coagulation proteins and the release of cytokines by HUVECs through the activation of platelets which occurred in a GP IIb-IIIa-dependent manner, a process that could be selectively blocked by SR121566A.


Sign in / Sign up

Export Citation Format

Share Document