Platelet Adhesion, Release and Aggregation in Flowing Blood: Effects of Surface Properties and Platelet Function.

1976 ◽  
Vol 35 (01) ◽  
pp. 124-138 ◽  
Author(s):  
Hans R Baumgartner ◽  
Reto Muggli ◽  
Thomas B Tschopp ◽  
Vincent T Turitto

SummaryPlatelet adhesion to natural and artificial surfaces and adhesion-induced aggregation were investigated in vitro using an annular perfusion chamber. The surfaces were exposed to anticoagulated blood under identical flow conditions (~ arterial shear rates). The initial attachment of platelets (contact) appeared less surface specific than spreading and release. Fibrillar collagen was the most powerful inducer of platelet degranulation whereas elastin, microfibrils and epon were virtually inactive. Fibrillar collagen caused release also in the absence of spreading. Surface coverage with platelets did not exceed 25 % unless spreading occurred. Perfusion with platelet-free plasma or platelet-poor blood did not remove adhering platelets. However, platelets were translocated from mural thrombi to the surface by such perfusion. In addition, platelets which detached from mural thrombi adhered more readily to elastin or microfibrils than platelets from the circulating blood. The initial attachment of platelets to subendothelium was inhibited in von Willebrand’s disease, the Bernard-Soulier syndrome and at high concentrations of dipyridamole; spreading was inhibited in storage pool disease of rats, at low temperature (20° C), with EDTA (3 mM) and Prostaglandin E1 (1 μM); and adhesion-induced aggregation was inhibited in thrombasthenia, storage pool disease and after ingestion of sulfinpyrazone or Aspirin.It is concluded that the initial attachment (contact) of platelets, spreading and surface-induced release of platelet constituents are at least partially independent phenomena, the latter two being highly surface specific. At flow conditions which cause the disappearance of platelet thrombi, platelet adhesion appears as an irreversible process.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3501-3501
Author(s):  
Jiansong Huang ◽  
Xiaofeng Shi ◽  
Wenda Xi ◽  
Ping Liu ◽  
Xiaodong Xi

Abstract The RGT sequences of the integrin β3 tail directly and constitutively bind the inactive c-Src, regulating integrin αIIbβ3 signaling and platelet function. Previous work has shown that disrupting the interaction of c-Src with β3 via myristoylated RGT peptide or deletion of the RGT sequences in β3 selectively inhibits integrin αIIbβ3 outside-in signaling in platelets. However, the precise molecular mechanisms by which the Src-β3 association regulates integrin αIIbβ3 signaling need to be clarified. We found that active c-Src phosphoylated the Y747 and Y759 residues of β3 directly at the in vitro protein/protein level or in CHO cell models bearing Tac-β3 chimeras, which were devoid of the intact β3 signal transduction. Furthermore, data from mass spectrometry, [γ-32P] ATP incorporation assays and CHO cell/Tac-β3 chimeras demonstrated that the direct phosphorylation of Y747 and Y759 by active c-Src did not depend on the binding of c-Src to the RGT sequences of the β3 tail. To further investigate the biological functions of Src-β3 association in signal transduction we employed a cell-permeable and reduction-sensitive peptide (myr-AC∼CRGT), which disrupted the Src-β3 association in platelets independent of membrane-anchorage, and found that when platelets were stimulated by thrombin the c-Src activation and the phosphorylation of the tyrosine residues of the β3 tail were substantially inhibited by the presence of the peptide. These results suggest that one of the crucial biological functions of Src-β3 association is to serve as a “bridge” linking integrin signaling with the c-Src full activation and phosphorylation of the tyrosines of the β3 tail. To answer whether the RGT peptide binding to Src is able to alter the enzymatic activity of c-Src, we examined the Src-Csk association, the phosphorylation status of Y416 and Y527 of c-Src and the c-Src kinase catalytic activity. Results showed that myr-AC∼CRGT did not dissociate Csk from c-Src in resting platelets and the phosphorylation level of Y416 and Y527 of c-Src remained unaltered. Consistent data were also obtained from in vitro analysis of the c-Src kinase catalytic activity in the presence of CRGT peptide. These results suggest that myr-AC∼CRGT peptide per se does not fully activate c-Src. Myr-AC∼CRGT was also found to inhibit integrin αIIbβ3 outside-in signaling in human platelets. To examine the effect of the myr-AC∼CRGT on platelet adhesion and aggregation under flow conditions, we measured the platelet thrombus formation under different shear rates. Myr-AC∼CRGT did not affect the platelet adhesion at a wall shear rate of 125 s-1. The inability of myr-AC∼CRGT to affect platelet adhesion and aggregation remained at 500 s-1 shear rates. At 1,500 s-1, or 5,000 s-1 rates, myr-AC∼CRGT partially inhibited platelet adhesion and aggregation. These observations indicate that the Src-regulated outside-in signaling plays a pivotal role in the stable thrombus formation and the thrombus growth under flow conditions. The present study reveals novel insights into the molecular mechanisms by which c-Src regulates integrin αIIbβ3 signaling, particularly the phorsphorylation of the β3 cytoplasmic tyrosines, and provides first evidence in human platelets that the RGT peptide or derivatives regulate thrombus formation through dissociating the Src-β3 interaction. The data of this work allow us to anticipate that intracellular delivery of the RGT peptide or its analogues may have potential in the development of a new antithrombotic strategy where only the Src-β3 interaction is specifically interrupted so as to provide an effective inhibition on thrombosis together with a decent hemostasis. Disclosures: No relevant conflicts of interest to declare.


1987 ◽  
Author(s):  
E Bastida ◽  
G Escolar ◽  
R Castillo ◽  
A Ordinas ◽  
J J Sixma

Fibronectin (FN) plays a role in several adhesion mediated functions including the interaction of platelets with subendothelium.We investigated the role of plasma FN in platelet adhesion and platelet thrombus formation under flow conditions.To do this we used two different perfusion models:1)the annular chamber with α -chymotrypsin-treated rabbit vessel segments and 2)the flat chamber with coverslips coated with fibrillar purified human collagen type III.Perfusates consisted of washed platelets, and washed red blood celIs,suspended in normal or FN-depleted plasma.Perfusions were carried out for 10 min at shear rates of 300 or 1300 sec™1 Platelet deposition and thrombus dimensions were morphometrically evaluated by a computerized system. We found that depletion of plasma FN significantly reduced the percentage of total coverage surface and percentage of platelet thrombus, at both shear rates studied, and in both perfusion systems (p < 0.01)(p < 0.01).The dimensions of the platelet thrombi formed in perfusions at high shear rate were also significantly reduced in perfusions carried out with FN-depleted plasma.(p < 0.01). Addition of purified FN to FN-depleted perfusates restored all the values to those measured in the control perfusions.These results indicate that, in addition to supporting platelet adhesion to the subendothelium and to fibrillar collagen, FN contributes to platelet thrombus formation under flow conditions.


Blood ◽  
1988 ◽  
Vol 72 (1) ◽  
pp. 82-88
Author(s):  
PF Nievelstein ◽  
JJ Sixma

Previous studies have indicated that activated blood platelets interact with fibronectin through binding of fibronectin to the glycoprotein IIb- IIIa complex (GPIIb-IIIa). The cell attachment site of fibronectin with its crucial arg-gly-asp(-ser) [RGD(S)]sequence is involved in these bindings. We studied the importance of these interactions for the fibronectin dependence of platelet adhesion under flow conditions. An RGDS-containing hexapeptide (GRGDSP) was compared with a nonreactive control peptide (GRGESP). The GRGDSP-peptide inhibited thrombin-induced aggregation and adhesion under static conditions at 0.1 mmol/L. This concentration had no effect on platelet adhesion to nonfibrillar collagen type I in flow. GRGDSP at 1 mmol/L had a significant inhibitory effect at 1,500 s-1, but not at the lower shear rates of 800 and 300 s-1 where platelet adhesion is also fibronectin dependent. On the matrix of cultured human umbilical vein endothelial cells, 1 mmol/L GRGDSP had no effect on platelet adhesion. The relation between GPIIb- IIIa and fibronectin dependence was investigated with platelets of a patient with Glanzmann's thrombasthenia and monoclonal antibodies to GPIIb-IIIa using endothelial cell matrix (ECM) as a surface. Platelets of normal controls or a patient with Glanzmann's thrombasthenia showed a similar inhibition of adhesion in the presence of fibronectin-free plasma after the ECMs had been preincubated with antifibronectin F(ab')2 fragments. Incubation of platelets with anti-GPIIb-IIIa showed inhibition of platelet adhesion at high shear rates. Dependence on fibronectin for platelet adhesion was still observed even though separate experiments had shown that these anti-GPIIb-IIIa antibodies could block binding of radiolabeled fibronectin to thrombin-activated platelets. These data suggest the existence of another binding system for the interaction of platelets with fibronectin that may only appear when fibronectin is present on a surface.


Blood ◽  
1988 ◽  
Vol 72 (1) ◽  
pp. 82-88 ◽  
Author(s):  
PF Nievelstein ◽  
JJ Sixma

Abstract Previous studies have indicated that activated blood platelets interact with fibronectin through binding of fibronectin to the glycoprotein IIb- IIIa complex (GPIIb-IIIa). The cell attachment site of fibronectin with its crucial arg-gly-asp(-ser) [RGD(S)]sequence is involved in these bindings. We studied the importance of these interactions for the fibronectin dependence of platelet adhesion under flow conditions. An RGDS-containing hexapeptide (GRGDSP) was compared with a nonreactive control peptide (GRGESP). The GRGDSP-peptide inhibited thrombin-induced aggregation and adhesion under static conditions at 0.1 mmol/L. This concentration had no effect on platelet adhesion to nonfibrillar collagen type I in flow. GRGDSP at 1 mmol/L had a significant inhibitory effect at 1,500 s-1, but not at the lower shear rates of 800 and 300 s-1 where platelet adhesion is also fibronectin dependent. On the matrix of cultured human umbilical vein endothelial cells, 1 mmol/L GRGDSP had no effect on platelet adhesion. The relation between GPIIb- IIIa and fibronectin dependence was investigated with platelets of a patient with Glanzmann's thrombasthenia and monoclonal antibodies to GPIIb-IIIa using endothelial cell matrix (ECM) as a surface. Platelets of normal controls or a patient with Glanzmann's thrombasthenia showed a similar inhibition of adhesion in the presence of fibronectin-free plasma after the ECMs had been preincubated with antifibronectin F(ab')2 fragments. Incubation of platelets with anti-GPIIb-IIIa showed inhibition of platelet adhesion at high shear rates. Dependence on fibronectin for platelet adhesion was still observed even though separate experiments had shown that these anti-GPIIb-IIIa antibodies could block binding of radiolabeled fibronectin to thrombin-activated platelets. These data suggest the existence of another binding system for the interaction of platelets with fibronectin that may only appear when fibronectin is present on a surface.


1977 ◽  
Author(s):  
J. Conard ◽  
M. Samama ◽  
B. Vargaftig ◽  
C. Lecrubier ◽  
J. Breton-Gorius ◽  
...  

A thrombocytopathi a associated with a lifelong hemorragic diathesis has been observed in a 18 years old woman. The bleeding time is prolonged. Platelet count and size, and clot retraction are normal. Adrenalin-induced aggregation is abolished and response to ADP and arachidonic acid are impaired. A storage-pool disease is unlikely since platelet ultrastructural aspects appear normal and the number of dense bodies is overnormal, that is confirmed by examination of platelets charged with mepacrine. The uptake of 14(c) serotonin is not increased and it is in correlation with abnormal fluorescence of meracrine-stained dense bodies. Contrasting with aspirin-like syndrome, the first phase aggregation is decreased and in vitro aspirin tolerance test abnormal. Finally, although platelets do not aggregate normally to arachidonic acid, production of Tromboxane A2 and transferable platelet aggregating activity are present. Hence, the thrombocytorathia reported here could not be classified, but a congenital defect is suspected.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4174-4174
Author(s):  
Khon C. Huynh ◽  
Huong T. T. Nguyen ◽  
Volker R. Stoldt ◽  
Marianna Gyenes ◽  
Rudiger E. Scharf

Abstract Introduction: Plasma fibronectin (FN) is synthesized by hepatocytes and secreted into the circulation in a soluble, compact and non-fibrillar form. Plasma FN is assembled by cells or adherent platelets into functional fibrils. Reports have indicated that the process to incorporate FN into multimer fibrils can also occur in cell-free models in vitro by incubation with denaturants, reducing agents, or anastellin (FN peptidic fragment). Here, we report on (1) the formation of insoluble fibrillar-like supramolecules of plasma FN (FN fibrils) by exposing the molecules to increasing shear rates and (2) the functional characterization in platelet adhesion and aggregation. Methods: To induce the formation of FN fibrils, 1 ml of plasma FN solution (100 μg/ml) was added to plates pre-coated with FN (100 μg/ml). Subsequently, the FN solutions were exposed to shear (50 to 5000 s-1 within 5 min and subsequently 5000 to 50 s-1 within 5 min) generated by a cone-plate rheometer (Haaka Rheostress 1; Thermo Scientific). Viscosities of FN solutions were recorded. To quantify the formation of FN fibrils, FN solutions after exposure to shear were collected and incubated with 2% deoxycholate (DOC). The DOC-insoluble pellets containing FN fibrils were isolated by centrifugation at 19,000 g for 20 min at 4°C and resuspended in 1% SDS buffer for Western blot analyses. For adhesion experiments, washed platelets (107/ml) in HEPES Tyrode’s buffer were labeled with 10 μM 5-chloromethylfluorescein diacetate and placed on 96-well plates pre-coated with FN or FN fibrils (25 µg/ml) for 30 min at 37°C. In parallel experiments, platelets resuspended in FN-depleted plasma (107/ml) were placed onto immobilized collagen, fibrinogen, FN (10 µg/ml) in the presence of FN (300 µg/ml) or FN fibrils (10 µg/ml). For aggregation experiments, FN (5, 10, 300 µg/ml) or FN fibrils (5, 10 µg/ml) was added to platelet-rich plasma (PRP) or platelets resuspended in FN-depleted plasma (2.5 × 108/ml). Aggregation was induced by 400 nM PMA (Phorbol 12-myristate 13-acetate), or 10 µg/ml collagen. Results: The initial viscosities (mPa's) of FN solutions were 7.62 ± 0.98. Upon exposure to dynamic shear for 10 min, viscosities increased to 10.98 ± 1.81 (p = 0.02, n = 4), suggesting conformational changes of FN. Western blot analyses of DOC-insoluble fractions revealed bands of FN in the range of 220 – 250 kDa (reducing condition), indicative of the formation of insoluble fibrils in FN solutions after exposure to shear. Platelet adhesion and aggregation experiments were performed to compare the activity of FN fibrils with normal plasma FN. For adhesion experiments, washed platelets in HEPES Tyrode’s buffer were placed onto immobilized FN or FN fibrils (25 µg/ml). The adhesion rates (mean fluorescence signal ± SD) of washed platelets were higher onto surfaces coated with FN fibrils (0.5 ± 0.06) than onto surfaces coated with plasma FN (0.4 ± 0.01) (p = 0.04, n = 3). In parallel adhesion experiments using platelets resuspended in FN-depleted plasma, addition of plasma FN (300 µg/ml) increased platelet adhesion rates onto immobilized collagen (from 0.14 ± 0.005 to 0.2 ± 0.01, p = 0.0007), fibrinogen (from 0.16 ± 0.03 to 0.22 ± 0.01, p = 0.03), and FN (from 0.14 ± 0.01 to 0.18 ± 0.02, p = 0.04) (n = 3). Addition of FN fibrils at low concentration of 10 µg/ml had a similar supportive effect. FN showed an inhibitory effect in platelet aggregation. Activation by 400 nM PMA induced aggregation of PRP by 81% (amplitude). In the presence of plasma FN at 5, 10, 300 µg/ml, platelet aggregation was reduced to 50 %, 41 %, and 29.5 %, respectively. A stronger inhibition on platelet aggregation was seen when FN fibrils were added. PRP aggregated by 35.4 % and 17 % in the presence of 5 and 10 µg/ml FN fibrils, respectively. The same phenomenon was observed in aggregation assays using platelets resuspended in FN-depleted plasma and collagen (10 µg/ml) as activating agonist. Conclusion: Our study shows that dynamic shear rates induce the formation of insoluble fibrillar-like form of plasma FN in cell-free model in vitro. Fibril formation of FN can be monitored by measuring viscosities of FN solutions during exposure to shear and quantified by Western blot. Shear-induced formed FN fibrils have an explicitly stronger activity in supporting platelet adhesion and inhibiting platelet aggregation than normal plasma FN. This finding emphasizes the importance of FN assembly on its activity in platelet functions. Disclosures No relevant conflicts of interest to declare.


1977 ◽  
Vol 38 (03) ◽  
pp. 0620-0629 ◽  
Author(s):  
Th. B Tschopp ◽  
H. R Baumgartner

SummaryCitrated rat blood was exposed to either subendothelium or the fibrillar collagen of enzymatically modified subendothelium of rabbit aorta in a perfusion system under laminar blood flow conditions at a wall shear rate of 830 s−1. The resulting platelet surface interaction was estimated by a morphometric method.With blood of fawn-hooded (FH) rats, which suffer from hereditary platelet “storage pool disease”, platelet spreading was slower on both exposed surfaces and resulted in a lower rate of surface coverage with platelets on subendothelium if compared with controls.The rate of adhesion of FH-platelets to the fibrillar collagen, however, was slightly higher as compared to controls despite reduced platelet spreading. This was probably due to the absence of platelet thrombus formation observed with FH-rat blood, whereas massive platelet thrombus formation took place in the controls. It is suggested that platelets of controls which arrive near the surface are preferentially incorporated into the rapidly forming platelet thrombi rather than reaching the surface, and hence do not increase surface-coverage with adhering platelets.The defective platelet adhesion and aggregation in the FH-rat was also apparent after desendothelialization of the aorta in vivo, although to a lesser extent, probably due to the extremely low thrombogenicity of rat aorta subendothelium.


1976 ◽  
Vol 36 (02) ◽  
pp. 376-387 ◽  
Author(s):  
Teruhiko Umetsu ◽  
Kazuko Sanai ◽  
Tadakatsu Kato

SummaryThe effects of bupranolol, a new β-blocker, on platelet functions were investigated in vitro in rabbits and humans as compared with propranolol, a well-known β-blocker. At first, the effect of adrenaline on ADP-induced rabbit platelet aggregation was studied because adrenaline alone induces little or no aggregation of rabbit platelets. Enhancement of ADP-induced rabbit platelet aggregation by adrenaline was confirmed, as previously reported by Sinakos and Caen (1967). In addition the degree of the enhancement was proved to be markedly affected by the concentration of ADP and to increase with decreasing concentration of ADP, although the maximum aggregation (percent) was decreased.Bupranolol and propranolol inhibited the (adrenaline-ADP-)induced aggregation of rabbit platelets, bupranolol being approximately 2.4–3.2 times as effective as propranolol. Bupranolol stimulated the disaggregation of platelet aggregates induced by a combination of adrenaline and ADP, but propranolol did not. Platelet adhesion in rabbit was also inhibited by the β-blockers and bupranolol was more active than propranolol. With human platelets, aggregation induced by adrenaline was inhibited by bupranolol about 2.8–3.3 times as effectively as propranolol.From these findings. We would suggest that bupranolol might be useful for prevention or treatment of thrombosis.


Blood ◽  
1976 ◽  
Vol 48 (4) ◽  
pp. 511-515
Author(s):  
FI Pareti ◽  
A Capitanio ◽  
PM Mannucci

A patient with clinical and laboratory evidence of disseminated intravascular coagulation associated with deep-vein thrombosis and pulmonary embolism developed a qualitative platelet abnormality characterized by a defective release reaction. Second-phase aggregation induced by ADP and adrenaline was impaired, and reduced collagen- induced aggregation was accompanied by defective release of ADP and ATP. The decrease in total platelet ATP and ADP, the high ATP:ADP ratio in the presence of normal amounts of metabolic adenine nucleotides, and the low content of serotonin associated with abnormal uptake and metabolism of the exogenous amine suggested that the defective platelet function was due to lack of the platelet organelles in which serotonin and nonmetabolic adenine nucleotides are normally stored. Acquired storage pool disease is likely to be related to exposure of circulating platelets to aggregating agents, with their degranulation occurring during disseminated intravascular coagulation.


1977 ◽  
Author(s):  
H.R. Baumgartner

Sodium nitroprusside (SNP), a potent vasodilator, has shown beneficial effects in acute myocardial infarction. Since platelets may play an important role in the pathogenesis of myocardial infarction, the effect of SNP on their interaction with rabbit aorta subendothelium was investigated in vivo and under controlled blood flow conditions ex vivo and in vitro.One iliac artery and the abdominal aorta were denuded of endothelium by balloon catheter injury during infusion of glucose, SNP at 6 or 12 μg/kg/min in groups of 12, 6 and 7 rabbits respectively. The aorta and their branches were perfuse-fixed under controlled pressure 10 min after denudation. Morphometric evaluation showed dose-dependent and significant (2p < 0.01 or 0.001) inhibition of platelet spreading, adhesion and aggregation. The latter was abolished at the higher dose of SNP. Denudation and subsequent platelet adhesion caused strong vasoconstriction (2p < 0.001) which was inhibited by SNP (2p < 0.01).By exposure of subendothelium to either citrated blood or native blood in a flow chamber (2000 sec-1 shear rate) strong inhibition of spreading and adhesion-induced aggregation was again demonstrated at 6 and 12 μg/kg/min SNP. In vitro, adhesion-induced aggregation was completely abolished after the addition of SNP to rabbit (at 20 μg/ml) or human blood (2 μg/ml). 1 μg/ml PGE1 was needed to induce a similar inhibitory effect.Thus SNP is a strong inhibitor of platelet function and of injury + platelet induced vasoconstriction. These findings may explain its beneficial effect in acute myocardial infarction.


Sign in / Sign up

Export Citation Format

Share Document