scholarly journals Shear-Induced Fibrillar-like Supramolecules of Plasma Fibronectin: A New Form of Fibronectin with Enhanced Activity in Platelet Adhesion and Aggregation

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4174-4174
Author(s):  
Khon C. Huynh ◽  
Huong T. T. Nguyen ◽  
Volker R. Stoldt ◽  
Marianna Gyenes ◽  
Rudiger E. Scharf

Abstract Introduction: Plasma fibronectin (FN) is synthesized by hepatocytes and secreted into the circulation in a soluble, compact and non-fibrillar form. Plasma FN is assembled by cells or adherent platelets into functional fibrils. Reports have indicated that the process to incorporate FN into multimer fibrils can also occur in cell-free models in vitro by incubation with denaturants, reducing agents, or anastellin (FN peptidic fragment). Here, we report on (1) the formation of insoluble fibrillar-like supramolecules of plasma FN (FN fibrils) by exposing the molecules to increasing shear rates and (2) the functional characterization in platelet adhesion and aggregation. Methods: To induce the formation of FN fibrils, 1 ml of plasma FN solution (100 μg/ml) was added to plates pre-coated with FN (100 μg/ml). Subsequently, the FN solutions were exposed to shear (50 to 5000 s-1 within 5 min and subsequently 5000 to 50 s-1 within 5 min) generated by a cone-plate rheometer (Haaka Rheostress 1; Thermo Scientific). Viscosities of FN solutions were recorded. To quantify the formation of FN fibrils, FN solutions after exposure to shear were collected and incubated with 2% deoxycholate (DOC). The DOC-insoluble pellets containing FN fibrils were isolated by centrifugation at 19,000 g for 20 min at 4°C and resuspended in 1% SDS buffer for Western blot analyses. For adhesion experiments, washed platelets (107/ml) in HEPES Tyrode’s buffer were labeled with 10 μM 5-chloromethylfluorescein diacetate and placed on 96-well plates pre-coated with FN or FN fibrils (25 µg/ml) for 30 min at 37°C. In parallel experiments, platelets resuspended in FN-depleted plasma (107/ml) were placed onto immobilized collagen, fibrinogen, FN (10 µg/ml) in the presence of FN (300 µg/ml) or FN fibrils (10 µg/ml). For aggregation experiments, FN (5, 10, 300 µg/ml) or FN fibrils (5, 10 µg/ml) was added to platelet-rich plasma (PRP) or platelets resuspended in FN-depleted plasma (2.5 × 108/ml). Aggregation was induced by 400 nM PMA (Phorbol 12-myristate 13-acetate), or 10 µg/ml collagen. Results: The initial viscosities (mPa's) of FN solutions were 7.62 ± 0.98. Upon exposure to dynamic shear for 10 min, viscosities increased to 10.98 ± 1.81 (p = 0.02, n = 4), suggesting conformational changes of FN. Western blot analyses of DOC-insoluble fractions revealed bands of FN in the range of 220 – 250 kDa (reducing condition), indicative of the formation of insoluble fibrils in FN solutions after exposure to shear. Platelet adhesion and aggregation experiments were performed to compare the activity of FN fibrils with normal plasma FN. For adhesion experiments, washed platelets in HEPES Tyrode’s buffer were placed onto immobilized FN or FN fibrils (25 µg/ml). The adhesion rates (mean fluorescence signal ± SD) of washed platelets were higher onto surfaces coated with FN fibrils (0.5 ± 0.06) than onto surfaces coated with plasma FN (0.4 ± 0.01) (p = 0.04, n = 3). In parallel adhesion experiments using platelets resuspended in FN-depleted plasma, addition of plasma FN (300 µg/ml) increased platelet adhesion rates onto immobilized collagen (from 0.14 ± 0.005 to 0.2 ± 0.01, p = 0.0007), fibrinogen (from 0.16 ± 0.03 to 0.22 ± 0.01, p = 0.03), and FN (from 0.14 ± 0.01 to 0.18 ± 0.02, p = 0.04) (n = 3). Addition of FN fibrils at low concentration of 10 µg/ml had a similar supportive effect. FN showed an inhibitory effect in platelet aggregation. Activation by 400 nM PMA induced aggregation of PRP by 81% (amplitude). In the presence of plasma FN at 5, 10, 300 µg/ml, platelet aggregation was reduced to 50 %, 41 %, and 29.5 %, respectively. A stronger inhibition on platelet aggregation was seen when FN fibrils were added. PRP aggregated by 35.4 % and 17 % in the presence of 5 and 10 µg/ml FN fibrils, respectively. The same phenomenon was observed in aggregation assays using platelets resuspended in FN-depleted plasma and collagen (10 µg/ml) as activating agonist. Conclusion: Our study shows that dynamic shear rates induce the formation of insoluble fibrillar-like form of plasma FN in cell-free model in vitro. Fibril formation of FN can be monitored by measuring viscosities of FN solutions during exposure to shear and quantified by Western blot. Shear-induced formed FN fibrils have an explicitly stronger activity in supporting platelet adhesion and inhibiting platelet aggregation than normal plasma FN. This finding emphasizes the importance of FN assembly on its activity in platelet functions. Disclosures No relevant conflicts of interest to declare.

1976 ◽  
Vol 36 (02) ◽  
pp. 376-387 ◽  
Author(s):  
Teruhiko Umetsu ◽  
Kazuko Sanai ◽  
Tadakatsu Kato

SummaryThe effects of bupranolol, a new β-blocker, on platelet functions were investigated in vitro in rabbits and humans as compared with propranolol, a well-known β-blocker. At first, the effect of adrenaline on ADP-induced rabbit platelet aggregation was studied because adrenaline alone induces little or no aggregation of rabbit platelets. Enhancement of ADP-induced rabbit platelet aggregation by adrenaline was confirmed, as previously reported by Sinakos and Caen (1967). In addition the degree of the enhancement was proved to be markedly affected by the concentration of ADP and to increase with decreasing concentration of ADP, although the maximum aggregation (percent) was decreased.Bupranolol and propranolol inhibited the (adrenaline-ADP-)induced aggregation of rabbit platelets, bupranolol being approximately 2.4–3.2 times as effective as propranolol. Bupranolol stimulated the disaggregation of platelet aggregates induced by a combination of adrenaline and ADP, but propranolol did not. Platelet adhesion in rabbit was also inhibited by the β-blockers and bupranolol was more active than propranolol. With human platelets, aggregation induced by adrenaline was inhibited by bupranolol about 2.8–3.3 times as effectively as propranolol.From these findings. We would suggest that bupranolol might be useful for prevention or treatment of thrombosis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3197-3197 ◽  
Author(s):  
Yan Yang ◽  
Zhenyin Shi ◽  
Adili Reheman ◽  
Wuxun Jin ◽  
Conglei Li ◽  
...  

Abstract Abstract 3197 Background: Thrombosis and cardiovascular diseases (CVDs) result from blood vessel occlusion by inappropriately activated platelets. They are the leading causes of morbidity and mortality worldwide. Anthocyanins are major phytochemicals abundant in plant food and have been shown to play a protective role against CVDs. Our previous studies have demonstrated that anthocyanins are antioxidative and prevent inflammation (J Biol Chem. 2005; 280:36792-01; Arterioscler Thromb Vasc Biol. 2007; 27:519-24), which may indirectly affect platelet function. It has also been reported that anthocyanins affect platelet activities in whole blood and platelet rich plasma (PRP). However, the direct effects of anthocyanins on platelet function and thrombus formation have not been studied. Methods: Here we investigated the effects of anthocyanins on thrombosis using purified platelets as well as several thrombosis models in vitro and in vivo. Cyaniding-3-gulucoside (Cy-3-g) and delphinidin-3-glucoside (Dp-3-g), the two predominantly bioactive compounds of anthocyanin preparations, were prepared from Polyphenol AS Company in Norway. Purified gel-filtered platelets and PRP from healthy human volunteers and C57BL/6J mice were incubated at 37°C for 10 minutes with different concentrations (0.5μM, 5μM and 50μM) of Cy-3-g, Dp-3-g or PBS buffer as a control. Platelet aggregation was assessed by aggregometry using 5μM ADP, 10μg/ml collagen, or 100μM thrombin receptor activating peptide (TRAP; AYPGKF) as agonists. Platelet adhesion and aggregation were assessed in response to an immobilized collagen matrix in an ex vivo perfusion chamber at both high (1800 s-1) and low (600 s-1) shear rates. The expression of activated GPIIbIIIa was determined via PAC-1 monoclonal antibody in flow cytometry. Lastly, the effects of anthocyanins on thrombus formation in C57BL/6J mice were assessed using a FeCl3-induced intravital microscopy thrombosis model. Results: Both Cy-3-g and Dp-3-g significantly inhibited platelet aggregation induced by collagen and TRAP in gel-filtered platelets, and inhibited aggregation induced by ADP, TRAP and collagen in human and mouse PRP. These inhibitory functions were observed at Cy-3-g and Dp-3-g doses as low as 0.5μM. Cy-3-g and Dp-3-g also reduced the surface expression of activated GPIIbIIIa on resting human platelets in a dose-dependent manner. These compounds also markedly reduced platelet adhesion and aggregation in perfusion chamber assays at both low and high shear rates. Using intravital microscopy, we further demonstrated that Cy-3-g and Dp-3-g decreased platelet deposition, destabilized thrombi, and prolonged the time required for thrombus formation and vessel occlusion. Conclusions: our data clearly demonstrated for the first time that anthocyanin compounds directly inhibited platelet activation, adhesion and aggregation, as well as attenuated thrombus growth at both arterial and veinous shear stresses. These effects on platelets likely contribute to the protective effects of anthocyanins against thrombosis and CVDs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2209-2209 ◽  
Author(s):  
Khon C. Huynh ◽  
Volker R. Stoldt ◽  
Marianna Gyenes ◽  
Abdelouahid El-Khattouti ◽  
Rudiger E. Scharf

Abstract Abstract 2209 Introduction: Fibronectin (Fn), a dimeric adhesive glycoprotein of 230 to 250 kDa monomers, is present both in plasma and the extracellular matrix. Fn has been suggested to interact with platelets, subsequently being unfolded and forming fibrillar-like networks that contribute to platelet adhesion and aggregation. In our study, we examined the effect of Fn isolated from plasma on platelet adhesion and aggregation in vitro. Specifically, we explored the effect of Fn unfolding while interacting with platelets. Methods: For adhesion experiments, mepacrine-labeled washed platelets in the absence or presence of exogenous Fn (100 μg/ml) were incubated in wells pre-coated with collagen type I, fibrinogen (Fg) or Fn (10 μg/ml each) for 30 min at 37°C. For aggregation experiments, washed platelets were stimulated with 40 nM PMA or 10 μg/ml collagen in the absence or presence of Fn (300 μg/ml). For fluorescence resonance energy transfer (FRET) experiments, Fn isolated from human plasma was doubly conjugated with alexa fluor 488 and 546. Labeled Fn was mixed with 10-fold excess of unlabeled Fn to prevent energy transfer between adjacent protein molecules. Fn mixtures (20 or 100 μg/ml) were incubated for 3 h at 22°C with washed platelets in suspension (108/ml) or with platelets adherent onto immobilized Fn (50 μg/ml). In both settings, platelets were stimulated by 40 nM PMA. In some experiments, platelets were pre-incubated with the monoclonal antibodies LM609 or 10E5 (10 μg/ml) to block αvβ3 or αIIbβ3, respectively, prior to the addition of labeled Fn. For control, FRET signals of Fn mixtures without platelets were recorded. Results: Upon addition of soluble Fn (100 μg/ml) to washed platelets and subsequent co-incubation in wells pre-coated with collagen, Fg, or Fn (10 μg/ml) for 30 min, the percentage (mean % ± SD) of platelets adherent onto one of the immobilized ligands increased significantly by 228±33 (p=0.0112, n=3), 249±42 (p=0.005, n=3), or 198±21 (p=0.0017, n=3), respectively, as compared to adhesion experiments without addition of soluble Fn. By contrast, Fn had an opposing effect on platelet aggregation. Thus, addition of Fn (300 μg/ml) to washed platelets resulted in a reduction of 25 % or 50 % in platelet aggregation induced by PMA (40nM) or collagen (10 μg/ml), respectively. To determine Fn unfolding, the protein was doubly labeled with alexa fluor 488 (donor) randomly at 7–9 amine residues and alexa fluor 546 (acceptor) specifically at 4 free cysteine residues for FRET analyses. To access the sensitivity of FRET for conformational changes in Fn, we exposed labeled Fn to increasing concentrations of GdnHCl (1–4 M) and measured FRET. FRET signals, defined by the ratio of acceptor to donor fluoresecence intensity, varied over the range of GdnHCl concentrations indicating the conformational changes in Fn from its compact to its unfolded state. Fn in its compact conformation (0 M GdnHCl) had a FRET signal of 0.55 (100%) which decreased to 0.34 (63%), as Fn extended in 1 M GdnHCl solution. Further unfolding of Fn in 2 M, 3M and 4 M GdnHCl reduced the FRET signal to 0.27 (50%), 0.23 (44%) and 0.21 (39%), respectively. Addition of labeled Fn to PMA-activated platelets adherent onto immobilized unlabled Fn caused a slow but progressive decrease in FRET signal by 4% at 1 h, 5 % at 2 h and 6% at 3 h incubation. The decrease in FRET signal was reduced to 2% when platelet αvβ3 was blocked by LM609. By contrast, FRET remained unchanged in control experiments without platelets. The same was true when labeled Fn was incubated with PMA-activated platelets in suspension or in the presence of 10E5 (blocking αIIbβ3). Conclusion: Our in vitro studies strongly suggest that fibronectin can play a dual role in hemostasis by promoting platelet adhesion onto immobilized ligands but reducing platelet aggregation. We also demonstrate that activated adherent but not suspended platelets can indeed progressively unfold fibronectin, thereby inducing profound conformational changes that may explain its oppositional effects in platelet adhesion and aggregation. Moreover, our data suggest that unfolding of fibronectin caused by adherent platelets is governed by β3 integrins. Hereby, αIIbβ3 plays a predominant role in comparison to αvβ3. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3501-3501
Author(s):  
Jiansong Huang ◽  
Xiaofeng Shi ◽  
Wenda Xi ◽  
Ping Liu ◽  
Xiaodong Xi

Abstract The RGT sequences of the integrin β3 tail directly and constitutively bind the inactive c-Src, regulating integrin αIIbβ3 signaling and platelet function. Previous work has shown that disrupting the interaction of c-Src with β3 via myristoylated RGT peptide or deletion of the RGT sequences in β3 selectively inhibits integrin αIIbβ3 outside-in signaling in platelets. However, the precise molecular mechanisms by which the Src-β3 association regulates integrin αIIbβ3 signaling need to be clarified. We found that active c-Src phosphoylated the Y747 and Y759 residues of β3 directly at the in vitro protein/protein level or in CHO cell models bearing Tac-β3 chimeras, which were devoid of the intact β3 signal transduction. Furthermore, data from mass spectrometry, [γ-32P] ATP incorporation assays and CHO cell/Tac-β3 chimeras demonstrated that the direct phosphorylation of Y747 and Y759 by active c-Src did not depend on the binding of c-Src to the RGT sequences of the β3 tail. To further investigate the biological functions of Src-β3 association in signal transduction we employed a cell-permeable and reduction-sensitive peptide (myr-AC∼CRGT), which disrupted the Src-β3 association in platelets independent of membrane-anchorage, and found that when platelets were stimulated by thrombin the c-Src activation and the phosphorylation of the tyrosine residues of the β3 tail were substantially inhibited by the presence of the peptide. These results suggest that one of the crucial biological functions of Src-β3 association is to serve as a “bridge” linking integrin signaling with the c-Src full activation and phosphorylation of the tyrosines of the β3 tail. To answer whether the RGT peptide binding to Src is able to alter the enzymatic activity of c-Src, we examined the Src-Csk association, the phosphorylation status of Y416 and Y527 of c-Src and the c-Src kinase catalytic activity. Results showed that myr-AC∼CRGT did not dissociate Csk from c-Src in resting platelets and the phosphorylation level of Y416 and Y527 of c-Src remained unaltered. Consistent data were also obtained from in vitro analysis of the c-Src kinase catalytic activity in the presence of CRGT peptide. These results suggest that myr-AC∼CRGT peptide per se does not fully activate c-Src. Myr-AC∼CRGT was also found to inhibit integrin αIIbβ3 outside-in signaling in human platelets. To examine the effect of the myr-AC∼CRGT on platelet adhesion and aggregation under flow conditions, we measured the platelet thrombus formation under different shear rates. Myr-AC∼CRGT did not affect the platelet adhesion at a wall shear rate of 125 s-1. The inability of myr-AC∼CRGT to affect platelet adhesion and aggregation remained at 500 s-1 shear rates. At 1,500 s-1, or 5,000 s-1 rates, myr-AC∼CRGT partially inhibited platelet adhesion and aggregation. These observations indicate that the Src-regulated outside-in signaling plays a pivotal role in the stable thrombus formation and the thrombus growth under flow conditions. The present study reveals novel insights into the molecular mechanisms by which c-Src regulates integrin αIIbβ3 signaling, particularly the phorsphorylation of the β3 cytoplasmic tyrosines, and provides first evidence in human platelets that the RGT peptide or derivatives regulate thrombus formation through dissociating the Src-β3 interaction. The data of this work allow us to anticipate that intracellular delivery of the RGT peptide or its analogues may have potential in the development of a new antithrombotic strategy where only the Src-β3 interaction is specifically interrupted so as to provide an effective inhibition on thrombosis together with a decent hemostasis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 156-156
Author(s):  
Christopher M. Spring ◽  
Wuxun Jin ◽  
Hong Yang ◽  
Adili Reheman ◽  
Guangheng Zhu ◽  
...  

Abstract Abstract 156 Platelet adhesion and aggregation at sites of vascular injury are key events required for haemostasis and thrombosis. It has been documented that von Willebrand factor (VWF) and fibrinogen (Fg) are required for platelet adhesion and aggregation. However, we previously showed that occlusive thrombi still form in mice deficient for both Fg and VWF (Fg/VWF−/−) via a β3 integrin-dependent pathway. Here, we have investigated novel, non-classical ligands of β3 integrin that may regulate platelet adhesion and aggregation. To identify potential ligand(s) of β3 integrin, latex beads were coated with purified human platelet β3 integrin and incubated with human plasma. Protein(s) specifically associated with β3 integrin were electrophoresed and apolipoprotein AIV (ApoA-IV) was identified by mass spectrometry. We found that ApoA-IV binds to the surface of stimulated platelets, but not to quiescent platelets or β3−/− platelets, and ApoA-IV/platelet association was blocked by the addition of a specific anti-β3 integrin monoclonal antibody. It appears that ApoA-IV binds to, but is not internalized by platelet β3 integrins. ApoA-IV-deficient (ApoA-IV−/−) mice exhibited enhanced platelet aggregation induced by ADP, Collagen, and TRAP in plasma (but not PIPES buffer) compared to wild type (WT) littermates. This enhancement was diminished when ApoA-IV−/− plasma was replaced by WT plasma, indicating that the reduction was due to plasma ApoA-IV and not an unrelated platelet effect. When platelets were incubated with FITC-Fg, ApoA-IV was able to reduce platelet/Fg association, indicating that ApoA-IV may act to displace pro-thrombotic β3 integrin ligand(s). In support of this, ApoA-IV reduced the number of adherent platelets on immobilized Fg in perfusion chamber assays and enhanced thrombus formation was observed when ApoA-IV−/− mouse blood was perfused over collagen. We found that addition of recombinant ApoA-IV inhibited platelet aggregation and thrombus formation in vitro, while the control apolipoprotein ApoA-I did not. Using intravital microscopy, we further demonstrated that early platelet deposition was increased, and the time for thrombus formation and vessel occlusion were shorter in ApoA-IV−/− mice, which can be corrected by recombinant ApoA-IV transfusion. Furthermore, recombinant ApoA-IV inhibited WT platelet aggregation, thrombus formation and enhanced thrombus dissolution both in vitro and in vivo. Our data demonstrate for the first time that ApoA-IV is a novel ligand of platelet β3 integrin that negatively regulates thrombosis. These new data are consistent with the reported association between ApoA-IV and reduced cardiovascular diseases, and establish the first link between ApoA-IV and thrombosis. Disclosures: No relevant conflicts of interest to declare.


1981 ◽  
Author(s):  
A Sumiyoshi ◽  
T Hayashi ◽  
M Fujii

The inhibitory effect of dilazep and aspirin on in vivo platelet adhesion and aggregation in rabbit aorta subjected to endothelial injury was investigated. Endothelial injury was induced by insertion of polyethylene tubing from the femoral artery into the aorta. In the beginning before surgery, experimental animals were intravenously given sufficient drug to inhibit platelet aggregation in vitro in response to ADP and collagen. For a quantitative analysis of platelet accumulation on the damaged aortas, 51Cr-labeled platelets were used. For morphological study, the aortas were fixed by perfusion at one hour after injury and examined by light and scanning electron microscopy for platelet adhesion and aggregation in injured area.Radioactivity of damaged aortas in rabbits administered dilazep (50 or 100 μg/kg) or aspirin (10 mg/kg) was significantly lower than in rabbits untreated by drug. Dilazep and aspirin did not prevent completely the adherence of platelets on injured area of the aorta, but inhibited considerably the platelet aggregation to form raised platelet thrombus.


Blood ◽  
1994 ◽  
Vol 84 (2) ◽  
pp. 490-497 ◽  
Author(s):  
J Moake ◽  
M Chintagumpala ◽  
N Turner ◽  
P McPherson ◽  
L Nolasco ◽  
...  

Abstract Two children with congenital chronic relapsing thrombotic thrombocytopenic purpura (TTP) have episodes every 3 weeks. These relapses can be prevented by the infusion of normal fresh-frozen plasma (FFP) without concurrent plasmapheresis. We conducted a study to determine whether the exposure of normal plasma to agents that inactivate human immunodeficiency virus and other viruses destroys the component necessary for the effective treatment of this type of TTP that requires only plasma infusion to prevent or reverse relapses. Clinical responsiveness and von Willebrand factor (vWF)-mediated fluid shear stress-induced platelet aggregation were evaluated before and after the infusion of 10 mL/kg FFP or solvent [tri(n- butyl)phosphate]/detergent (Triton X-100)-treated plasma (S/D plasma). Platelet aggregation at shear stresses of 90 to 180 dyne/cm2 (similar to those in the partially occluded microcirculation) imposed for 30 seconds was excessive using the citrated platelet-rich plasma of both patients, and was associated with the presence of unusually large vWF forms in patient platelet-poor plasma. Infusion with either FFP or S/D plasma at 3-week intervals caused the platelet count to increase to (or above) normal within 1 week (on 12 of 12 occasions); the disappearance or diminution of unusually large vWF forms within 1 hour (on 6 of 10 occasions studied); and the reversal within 1 to 4 hours of excessive shear-induced platelet aggregation (on 8 of 9 occasions studied). We conclude that a component in normal plasma resistant to S/D treatment is responsible for preventing thrombocytopenia and TTP episodes, and for controlling excessive shear-induced aggregation in these patients. Our results suggest that excessive in vivo platelet aggregation in chronic relapsing TTP and excessive in vitro vWF-mediated shear-induced aggregation may be similar phenomena.


1977 ◽  
Vol 37 (02) ◽  
pp. 274-282 ◽  
Author(s):  
P Olsson ◽  
H Lagergren ◽  
R Larsson ◽  
K Rådegran

SummaryA stable heparinized surface was prepared by sequential treatment of polyethylene with water solutions of hexadecylamine hydrochloride, heparin and glutardialdehyde. In order to explain the “non-thrombogenic” properties of this surface, it was evaluated with regard to prevention of platelet adhesion and aggregation.Human heparinized blood (2 and 10 IU/ml) with 51Cr-labelled autologous platelets was rotated for 60 minutes in untreated and heparin-treated circular tubings. The surface area/blood volume ratio was varied and an air-blood interface was present. In untreated tubings, platelet adhesion and aggregation increased in proportion to the size of the surface area/blood volume ratio, irrespective of the heparin concentrations of the blood. In the heparin-treated tubings, there was no measurable platelet adhesion to the surface and no platelet aggregation in the blood. The difference between the heparinized and the untreated surfaces with regard to platelet adhesion was discernible even after 10 minutes storage of stagnant blood.It is concluded that platelet adhesion and aggregation induced by exposure of blood to a foreign surface in an in vitro experimental model can be prevented by a stable heparin coating of the surface.


1976 ◽  
Vol 35 (01) ◽  
pp. 124-138 ◽  
Author(s):  
Hans R Baumgartner ◽  
Reto Muggli ◽  
Thomas B Tschopp ◽  
Vincent T Turitto

SummaryPlatelet adhesion to natural and artificial surfaces and adhesion-induced aggregation were investigated in vitro using an annular perfusion chamber. The surfaces were exposed to anticoagulated blood under identical flow conditions (~ arterial shear rates). The initial attachment of platelets (contact) appeared less surface specific than spreading and release. Fibrillar collagen was the most powerful inducer of platelet degranulation whereas elastin, microfibrils and epon were virtually inactive. Fibrillar collagen caused release also in the absence of spreading. Surface coverage with platelets did not exceed 25 % unless spreading occurred. Perfusion with platelet-free plasma or platelet-poor blood did not remove adhering platelets. However, platelets were translocated from mural thrombi to the surface by such perfusion. In addition, platelets which detached from mural thrombi adhered more readily to elastin or microfibrils than platelets from the circulating blood. The initial attachment of platelets to subendothelium was inhibited in von Willebrand’s disease, the Bernard-Soulier syndrome and at high concentrations of dipyridamole; spreading was inhibited in storage pool disease of rats, at low temperature (20° C), with EDTA (3 mM) and Prostaglandin E1 (1 μM); and adhesion-induced aggregation was inhibited in thrombasthenia, storage pool disease and after ingestion of sulfinpyrazone or Aspirin.It is concluded that the initial attachment (contact) of platelets, spreading and surface-induced release of platelet constituents are at least partially independent phenomena, the latter two being highly surface specific. At flow conditions which cause the disappearance of platelet thrombi, platelet adhesion appears as an irreversible process.


1977 ◽  
Author(s):  
J.L. Wautier ◽  
H. Souchon ◽  
A.P. Peltier ◽  
J.P. Caen

The attachment of CI to human platelets through Cls and the inhibition of platelet aggregation induced by collagen by purified Clq prompted us to investigate a possible interaction between platelet associated CI and collagen. Clq is a molecule composed of two moieties : a collagen like region and a globular region composed of polypeptides which may be isolated following hydrolysis by collagenase and pepsin respectively. Pure CI subcomponents (Clq, Clr, Cls), fractions of Clq (pepsin or collagenase treated) and specific antisera (anti Clq, anti Cls) were tested for their effect on collagen-induced aggregation and adhesion of gel filtered platelets. The pepsin derived fragment of Clq containing the collagen like region inhibited platelet aggregation and adhesion to collagen while collagenase treated Clq (globular moiety) did not modify the reaction. Preincubation of collagen with Cls inhibited platelet adhesion and aggregation. In other experiments platelets modified by anti Cls did not react with collagen while anti Clq, anti C3 or anti fibrinogen did not influence the reaction with collagen. These results suggest that the collagen like region of Clq binds to Cls with a possible reaction between Cls associated on the platelet or a platelet structure similar to Cls and collagen.


Sign in / Sign up

Export Citation Format

Share Document