scholarly journals Effects of Sodium Nitroprusside on Platelet Adhesion, Subsequent Aggregation and Vasoconstriction

1977 ◽  
Author(s):  
H.R. Baumgartner

Sodium nitroprusside (SNP), a potent vasodilator, has shown beneficial effects in acute myocardial infarction. Since platelets may play an important role in the pathogenesis of myocardial infarction, the effect of SNP on their interaction with rabbit aorta subendothelium was investigated in vivo and under controlled blood flow conditions ex vivo and in vitro.One iliac artery and the abdominal aorta were denuded of endothelium by balloon catheter injury during infusion of glucose, SNP at 6 or 12 μg/kg/min in groups of 12, 6 and 7 rabbits respectively. The aorta and their branches were perfuse-fixed under controlled pressure 10 min after denudation. Morphometric evaluation showed dose-dependent and significant (2p < 0.01 or 0.001) inhibition of platelet spreading, adhesion and aggregation. The latter was abolished at the higher dose of SNP. Denudation and subsequent platelet adhesion caused strong vasoconstriction (2p < 0.001) which was inhibited by SNP (2p < 0.01).By exposure of subendothelium to either citrated blood or native blood in a flow chamber (2000 sec-1 shear rate) strong inhibition of spreading and adhesion-induced aggregation was again demonstrated at 6 and 12 μg/kg/min SNP. In vitro, adhesion-induced aggregation was completely abolished after the addition of SNP to rabbit (at 20 μg/ml) or human blood (2 μg/ml). 1 μg/ml PGE1 was needed to induce a similar inhibitory effect.Thus SNP is a strong inhibitor of platelet function and of injury + platelet induced vasoconstriction. These findings may explain its beneficial effect in acute myocardial infarction.

Cytotherapy ◽  
2011 ◽  
Vol 13 (9) ◽  
pp. 1140-1152 ◽  
Author(s):  
Monica Gunetti ◽  
Alessio Noghero ◽  
Fabiola Molla ◽  
Lidia Irene Staszewsky ◽  
Noeleen de Angelis ◽  
...  

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
A Ondracek ◽  
T.M Hofbauer ◽  
A Mangold ◽  
T Scherz ◽  
V Seidl ◽  
...  

Abstract Introduction Leukocyte-mediated inflammation is crucial in acute myocardial infarction (AMI). We recently observed that neutrophil extracellular traps (NETs) are increased at the culprit site, promoting activation and differentiation of fibrocytes, cells with mesenchymal and leukocytic properties. Fibrocyte migration is mediated by monocyte chemoattractant protein (MCP)-1 and C-C chemokine receptor type 2 (CCR2). We investigated the interplay between NETs, fibrocyte function, and MCP-1 in AMI. Methods Culprit site and femoral blood of AMI patients was drawn during percutaneous coronary intervention. We characterized CCR2 expression of fibrocytes by flow cytometry. MCP-1 and the NET marker citrullinated histone H3 (citH3) were measured by ELISA. Fibrocytes were treated in vitro with MCP-1. Human coronary arterial endothelial cells (hCAECs) were stimulated with isolated NETs, and MCP-1 was measured by ELISA and qPCR. The influence of MCP-1 on NET formation in vitro was assessed using isolated neutrophils. Results We have included 50 consecutive AMI patients into the study. NETs and concentrations of MCP-1 were increased at the CLS. NET stimulation of hCAECs induced MCP-1 on mRNA and protein level. Increasing MCP-1 gradient was associated with fibrocyte accumulation at the site of occlusion. In the presence of higher MCP-1 these fibrocytes expressed proportionally less CCR2 than peripheral fibrocytes. In vitro, MCP-1 dose-dependently decreased fibrocyte CCR2 and reduced ex vivo NET release of healthy donor neutrophils. Conclusions NETs induce endothelial MCP-1 release, presumably promoting a chemotactic gradient for leukocyte and fibrocyte migration. MCP-1 mediated inhibition of NET formation could point to a negative feedback loop. These data will shed light on vascular healing. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Austrian Science Fund


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 899
Author(s):  
Clara Liu Chung Ming ◽  
Kimberly Sesperez ◽  
Eitan Ben-Sefer ◽  
David Arpon ◽  
Kristine McGrath ◽  
...  

Preeclampsia is a multifactorial cardiovascular disorder diagnosed after 20 weeks of gestation, and is the leading cause of death for both mothers and babies in pregnancy. The pathophysiology remains poorly understood due to the variability and unpredictability of disease manifestation when studied in animal models. After preeclampsia, both mothers and offspring have a higher risk of cardiovascular disease (CVD), including myocardial infarction or heart attack and heart failure (HF). Myocardial infarction is an acute myocardial damage that can be treated through reperfusion; however, this therapeutic approach leads to ischemic/reperfusion injury (IRI), often leading to HF. In this review, we compared the current in vivo, in vitro and ex vivo model systems used to study preeclampsia, IRI and HF. Future studies aiming at evaluating CVD in preeclampsia patients could benefit from novel models that better mimic the complex scenario described in this article.


Author(s):  
Clara Liu Chung Ming ◽  
Kimberly Sesperez ◽  
Eitan Ben-Sefer ◽  
David Arpon ◽  
Kristine McGrath ◽  
...  

Preeclampsia is a multifactorial cardiovascular disorder diagnosed after 20 weeks of gestation that is the leading cause of death for both mothers and babies in pregnancy. The pathophysiology remains poorly understood due to variability and unpredictability of disease manifestation when studied in animal models. After preeclampsia, both mothers and offspring have a higher risk of cardiovascular disease (CVD) including myocardial infarction or heart attack and heart failure (HF). Myocardial infarction is an acute myocardial damage that can be treated through reperfusion, however, that therapeutic approach leads to ischemic/reperfusion injury (IRI) often leading to HF. In this review, we compared the current in vivo, in vitro and ex vivo model systems used to study preeclampsia, IRI and HF. Future studies aiming at evaluating CVD in preeclampsia patients could benefit from novel models that better mimic the complex scenario described in this article.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Xiaowei Niu ◽  
Jingjing Zhang ◽  
Jinrong Ni ◽  
Runqing Wang ◽  
Weiqiang Zhang ◽  
...  

Background: To decipher the mechanisms of Angelica sinensis for the treatment of acute myocardial infarction (AMI) using network pharmacology analysis. Methods: Databases were searched for the information on constituents, targets, and diseases. Cytoscape software was used to construct the constituent–target–disease network and screen the major targets, which were annotated with the DAVID (Database for Annotation, Visualization and Integrated Discovery) tool. The cardioprotective effects of Angelica sinensis polysaccharide (ASP), a major component of A. sinensis, were validated both in H9c2 cells subjected to simulated ischemia by oxygen and glucose deprivation and in rats with AMI by ligation of the left anterior coronary artery. Results: We identified 228 major targets against AMI injury for A. sinensis, which regulated multiple pathways and hit multiple targets involved in several biological processes. ASP significantly decreased endoplasmic reticulum (ER) stress-induced cell death both in vitro and in vivo. In ischemia injury rats, ASP treatment reduced infarct size and preserved heart function. ASP enhanced activating transcription factor 6 (ATF6) activity, which improved ER-protein folding capacity. ASP activated the expression of p-AMP-activated protein kinase (p-AMPK) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α). Additionally, ASP attenuated levels of proinflammatory cytokines and maintained a balance in the oxidant/antioxidant levels after AMI. Conclusion:In silico analysis revealed the associations between A. sinensis and AMI through multiple targets and several key signaling pathways. Experimental data indicate that ASP protects the heart against ischemic injury by activating ATF6 to ameliorate the detrimental ER stress. ASP’s effects could be mediated via the activation of AMPK-PGC1α pathway.


1981 ◽  
Author(s):  
K U Weithmann ◽  
A G Hoechst

Aortas from rats, treated with 5-20 mg/kg of pentoxifylline (pof), penbutolol, prenylamine, clofibric acid or nicotinic acid showed, ex vivo, a significantly higher release of acid labile PGI2-like anti-aggregatory activity compared to controls. This activity could be suppressed by pre-treatment with 2 mg/kg Indomethacin. When incubated with rat aortas in vitro, pof showed a similar stimulatory effect on PGI2-like release, whereas clofibric-and nicotinic acid had no significant effect in this system. Pof and all other drugs mentioned above in therapeutical concentrations had virtually no effect on induced aggregation of human platelets in vitro. However, in the presence of small amounts PGI2 in vitro, inhibition of aggregation and platelet cyclic AMP are enhanced synergistically above the effects of PGI2 and pof individually.We conclude from these experiments that therapeutic doses of all drugs in our study stimulate in vivo the release of PGI2-like activity from vessel walls, thus inhibiting platelet aggregation in vivo. The primary site of action of pof seems to be the vessel wall, whereas the effect of clofibric acid and nicotinic acid on the vessel walls seem to be secondary. The elevation of platelet cyclic AMP levels which generally parallels PGI2-induced inhibition of aggregation might be further enhanced by pof known as an inhibitor of platelet cyclic AMP phosphodiesterase, thus explaining the observed synergistic effects between PGI2 and pof.


2007 ◽  
Vol 204 (13) ◽  
pp. 3103-3111 ◽  
Author(s):  
Brian G. Petrich ◽  
Patrizia Marchese ◽  
Zaverio M. Ruggeri ◽  
Saskia Spiess ◽  
Rachel A.M. Weichert ◽  
...  

Integrins are critical for hemostasis and thrombosis because they mediate both platelet adhesion and aggregation. Talin is an integrin-binding cytoplasmic adaptor that is a central organizer of focal adhesions, and loss of talin phenocopies integrin deletion in Drosophila. Here, we have examined the role of talin in mammalian integrin function in vivo by selectively disrupting the talin1 gene in mouse platelet precursor megakaryocytes. Talin null megakaryocytes produced circulating platelets that exhibited normal morphology yet manifested profoundly impaired hemostatic function. Specifically, platelet-specific deletion of talin1 led to spontaneous hemorrhage and pathological bleeding. Ex vivo and in vitro studies revealed that loss of talin1 resulted in dramatically impaired integrin αIIbβ3-mediated platelet aggregation and β1 integrin–mediated platelet adhesion. Furthermore, loss of talin1 strongly inhibited the activation of platelet β1 and β3 integrins in response to platelet agonists. These data establish that platelet talin plays a crucial role in hemostasis and provide the first proof that talin is required for the activation and function of mammalian α2β1 and αIIbβ3 integrins in vivo.


1977 ◽  
Author(s):  
H.R. Baumgartner ◽  
Th.B. Tschopp

Serotonin, PG-endoperoxides and thromboxane A2 - released from platelets by collagen for example - contract vascular smooth muscle in vitro. Platelets adhering to subendothelium in vivo undergo the release reaction. Platelet adhesion to subendothelium and concomitant vasoconstriction were therefore measured morphometrically in cross sections of rabbit iliac arteries which had been fixed by perfusion of glutaraldehyde at 110 mm Hg: (l) At 1.25, 2.5, 5, 10 and 20 min after complete denudation of endothelium by balloon catheter injury; (2)l0 min after partial denudation; (3)l0 min after complete denudation in rabbits made thrombocytopenic by injection of a heterologous antibody against platelets. The non-ballooned iliac artery served as control. In sham operated rabbits the vessel diameter (D) as derived from the length of the internal elastic lamina in cross sections was similar for both iliac arteries. (l)l0 min after denudation - when surface coverage with platelets approached 100 % and aggregation was maximal - D was reduced by 28+2% (mean ± SE, η = 20, 2p < 0.001). At 1.25 or 20 min - when few platelets or only degranulated platelets, respectively, adhered - D of ballooned and control arteries were again similar. (2) Localized platelet adhesion caused localized vasoconstriction. The extent of platelet adhesion and vasoconstriction correlated (r = 0.64, n = 44, 2p < 0.001). (5) In thrombocytopenic rabbits surface coverage with 22±7% platelets was associated with reduction of D by only 10+3%.Thus platelets freshly adhering to subendothelium in vivo appear to induce a transient contraction of medial smooth muscle cells during a few minutes.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3442-3442 ◽  
Author(s):  
Reheman Adili ◽  
Theodore R Holman ◽  
Michael Holinstat

Abstract Background: Adequate platelet reactivity is required for platelet adhesion and aggregation at the site of vascular injury to maintain hemostasis. However, excessive platelet reactivity can also lead to the formation of occlusive thrombi, the predominate underlying cause of myocardial infarction and stroke. While current anti-platelet treatments limit platelet function, they often result in an increased risk of bleeding. 12-lipoxygenase (12-LOX), an oxygenase highly expressed in the platelet, has been demonstrated by our lab and others to regulate PAR4 and GPVI-mediated platelet reactivity suggesting a role of 12-LOX in regulation of vivo thrombosis. However, the ability to pharmacologically target 12-LOX in vivo has not been established to date. Aims: To determine how 12-LOX regulates thrombus formation in vivo and whether platelet 12-LOX is an effective target for anti-platelet therapeutics, wild-type (WT) or 12-LOX deficient (12-LOX-/-) mice were treated with or without the 12-LOX inhibitor, ML355, and were assessed for inhibitory effects on platelet activation in vitro, ex-vivo and in vivo. Methods: The effect of the novel 12-LOX inhibitor ML355 on human platelet function was assessed in vitro by platelet aggregometry, ex vivo by perfusion chamber. In vivo thrombus formation and vessel occlusion in small and large vessels were studied in 12-LOX-/-, WT mice and mice treated with ML355 using intravital microscopy using the FeCl3 injury models. Results: Using in vitro platelet aggregation assays, ML355 dose dependently inhibited thrombin, PAR1-AP, and PAR4-AP-induced aggregation in washed human platelets. Interestingly, the negative regulatory effects of ML355 inhibition of 12-LOX can be overcome by high concentration of thrombin. Additionally, ML355 was able to attenuate ADP-induced platelet aggregation both in platelet-rich-plasma and whole blood. In ex vivo flow chamber assays, platelet adhesion and thrombus formation on collagen-coated surfaces at high shear was attenuated in both mouse and human whole blood after incubation with ML355. Further, platelet aggregation and thrombus growth in 12-LOX-/- mice was impaired in FeCl3-induced mesenteric or carotid artery thrombosis models. Thrombi in 12-LOX-/- mice were unstable and frequently form emboli, which resulted in impaired vessel occlusion or reopening. Additionally, thrombus formation and vessel occlusion was impaired in ML355 treated WT mice. Conclusions: The highly selective 12-LOX inhibitor ML355 inhibits platelets aggregation induced by various platelet agonists and ML355 inhibition of platelet function is not agonist specific. Platelet function at high shear in ex vivo conditions in both mice and human was attenuated in the presence of ML355. Thrombus growth, stability, and vessel occlusion was impaired in mice deficient for 12-LOX. Finally, the highly selective 12-LOX inhibitor ML355 attenuates thrombus formation and prevents vessel occlusion in vivo. Our data strongly indicates 12- LOX is an important determinant of platelet reactivity and inhibition of platelet 12-LOX may represent a new target for anti-platelet therapeutics. Disclosures No relevant conflicts of interest to declare.


1989 ◽  
Vol 67 (9) ◽  
pp. 989-993 ◽  
Author(s):  
A. W. Ford-Hutchinson ◽  
Y. Girard ◽  
A. Lord ◽  
T. R. Jones ◽  
M. Cirino ◽  
...  

L-670,596 ((−)6,8-difluoro-9-p-methylsulfonyl benzyl-1,2,3,4-tetrahydrocarbazol-1-yl-acetic acid) has been shown to be a potent receptor antagonist as evidenced by the inhibition of the binding of 125I-labeled PTA-OH to human platelets (IC50, 5.5 × 10−9 M), inhibition of U-44069 induced aggregation of human platelet rich plasma (IC50, 1.1 × 10−7 M), and competitive inhibition of contractions of the guinea pig tracheal chain induced by U-44069 (pA2,9.0). The compound was also active in vivo as shown by inhibition of arachidonic acid and U-44069 induced bronchoconstriction in the guinea pig (ED50 values, 0.04 and 0.03 mg/kg i.v., respectively), U-44069 induced renal vasoconstriction in the pig (ED50, 0.02 mg/kg i.v.), and inhibition of ex vivo aggregation of rhesus monkey platelets to U-44069 (active 1–5 mg/kg p.o.). The selectivity of the compound was indicated by the failure to inhibit, first, ADP-induced human or primate platelet aggregation and, second, bronchoconstriction in the guinea pig in vivo and contraction of the guinea pig tracheal chain in vitro to a variety of agonists. It is concluded that L-670,596 is a potent, selective, orally active thromboxane A2/prostaglandin endoperoxide receptor antagonist.Key words: thromboxane A2, thromboxane antagonist, prostaglandin endoperoxides, platelet aggregation.


Sign in / Sign up

Export Citation Format

Share Document