A P-Selectin/CD62P Monoclonal Antibody (LYP-20), in Tandem with Flow Cytometry, Detects in vivo Activated Circulating Rat Platelets in Severe Vascular Trauma

1994 ◽  
Vol 72 (05) ◽  
pp. 745-749 ◽  
Author(s):  
Elza Chignier ◽  
Maud Parise ◽  
Lilian McGregor ◽  
Caroline Delabre ◽  
Sylvie Faucompret ◽  
...  

SummaryP-selectin, also known as CD62P, GMP140 or PADGEM, is present in platelet a-granules and endothelial cell Weibel-Palade bodies and is very rapidly expressed on the surface of these cells on activation. In this study, an anti P-selectin monoclonal antibody (LYP20) was used, in tandem with flow cytometry, to identify activated platelets at the site of induced vascular trauma or in peripheral blood. Moreover, electron microscopy was performed to characterize sites of vascular trauma and quantify the number of adhering platelets. The same induced vascular trauma was observed to result into animals responding in 2 different ways (Group I, Group II) following the degree of platelet activation. Five rats, out of 14 with induced vascular trauma, had more than half of their circulating platelets expressing P-selectin when drawn at the site of the trauma (67.4% ± 3.44) or in peripheral blood (78.5% ± 2.5) (Group I). In the remaining 9 animals a much smaller proportion of circulating platelets expressed P-selectin when assayed from trauma sites (18% ± 3.34) or in peripheral blood (18.0% ± 4.30) (Group II). Enhanced P-selectin expression by circulating platelets in Group I, compared to Group II, appears to be linked to the degree of activated platelets adhering at sites of trauma (171 ± 15 × 103 platelets versus 48 ± 31 × 103 platelets per mm2). In the 5 control animals, that were not operated on, platelets expressing P-selectin when drawn at the site of a mock trauma (7.0% ± 1.84) or in the peripheral blood (11.2% ± 3.30) showed little activation. In addition, no platelet adhesion was seen on the vascular bed of these animals. Results from this study show that analysis of P-selectin (CD62P) expression, in circulating platelets, is a valuable and rapid marker of platelet activation following severe vascular trauma induced in rats. However, activated platelets were not detected to the same extent in the peripheral blood of all animals having undergone vascular trauma. It is conceivable that platelets, depending on the degree of activation, may be actively sequestered in organs and prevented from circulating. Alternatively, P-selectin may be rapidly endocytosed, or not expressed, by activated circulating platelets depending on the type of agonists implicated in vivo activation.

Blood ◽  
1994 ◽  
Vol 83 (4) ◽  
pp. 1006-1016 ◽  
Author(s):  
AD Cox ◽  
DV Devine

Abstract Stabilization of a clot is dependent on fibrin cross-linking mediated by the transglutaminase, factor XIIIa (FXIIIa). In addition to fibrin stabilization, FXIIIa acts on a number of platelet-reactive proteins, including fibronectin and vitronectin, as well as the platelet proteins, glycoprotein (GP) IIb-IIIa, myosin, and actin. However, conditions inducing the platelet-activation dependent binding of FXIIIa have not been characterized nor have the sites mediating FXIIIa binding been identified. The generation of FXIIIa and consequent detection of FXIIIa on the platelet surface were compared with other thrombin- induced activation events; the rate at which FXIIIa bound to activated platelets was much slower than platelet degranulation or fibrin(ogen) binding. Whereas platelets could be rapidly induced to express a functional receptor for FXIIIa, the rate of FXIIIa binding to platelets is limited by the rate of conversion of FXIII to FXIIIa. Immunoprecipitation of radiolabeled platelets using polyclonal anti- FXIII A-chain antibody identified two proteins corresponding to GPIIb and GPIIIa. Preincubation of intact platelets with 7E3, a monoclonal antibody that blocks the fibrinogen binding site, or GRGDSP peptide inhibited FXIIIa binding by about 95% when measured by flow cytometry; FXIIIa binding to purified GPIIb-IIIa was also inhibited by 7E3. The binding of FXIIIa to purified GPIIb-IIIa was enhanced by the addition of fibrinogen, but not by that of fibronectin or thrombospondin, suggesting that FXIIIa also binds to fibrinogen associated with the complex. These observations suggest that activated platelets bearing FXIIIa may enhance stabilization of platelet-rich thrombi through surface-localized cross-linking events.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4446-4452 ◽  
Author(s):  
Gaëtan Berger ◽  
Daqing W. Hartwell ◽  
Denisa D. Wagner

P-selectin is an adhesion receptor for leukocytes expressed by activated platelets and endothelial cells. To assess a possible role of P-selectin in platelet clearance, we adapted an in vivo biotinylation technique in mice. Wild-type and P-selectin–deficient mice were infused with N-hydroxysuccinimido biotin. The survival of biotinylated platelets was followed by flow cytometry after labeling with fluorescent streptavidin. Both wild-type and P-selectin–deficient platelets presented identical life spans of about 4.7 days, suggesting that P-selectin does not play a role in platelet turnover. When biotinylated platelets were isolated, activated with thrombin, and reinjected into mice, the rate of platelet clearance was unchanged. In contrast, storage of platelets at 4°C caused a significant reduction in their life span in vivo but again no significant differences were observed between the two genotypes. The infused thrombin-activated platelets rapidly lost their surface P-selectin in circulation, and this loss was accompanied by the simultaneous appearance of a 100-kD P-selectin fragment in the plasma. This observation suggests that the platelet membrane P-selectin was shed by cleavage. In conclusion, this study shows that P-selectin, despite its binding to leukocytes, does not mediate platelet clearance. However, the generation of a soluble form of P-selectin on platelet activation may have biological implications in modulating leukocyte recruitment or thrombus growth.


Blood ◽  
1994 ◽  
Vol 83 (4) ◽  
pp. 1006-1016 ◽  
Author(s):  
AD Cox ◽  
DV Devine

Stabilization of a clot is dependent on fibrin cross-linking mediated by the transglutaminase, factor XIIIa (FXIIIa). In addition to fibrin stabilization, FXIIIa acts on a number of platelet-reactive proteins, including fibronectin and vitronectin, as well as the platelet proteins, glycoprotein (GP) IIb-IIIa, myosin, and actin. However, conditions inducing the platelet-activation dependent binding of FXIIIa have not been characterized nor have the sites mediating FXIIIa binding been identified. The generation of FXIIIa and consequent detection of FXIIIa on the platelet surface were compared with other thrombin- induced activation events; the rate at which FXIIIa bound to activated platelets was much slower than platelet degranulation or fibrin(ogen) binding. Whereas platelets could be rapidly induced to express a functional receptor for FXIIIa, the rate of FXIIIa binding to platelets is limited by the rate of conversion of FXIII to FXIIIa. Immunoprecipitation of radiolabeled platelets using polyclonal anti- FXIII A-chain antibody identified two proteins corresponding to GPIIb and GPIIIa. Preincubation of intact platelets with 7E3, a monoclonal antibody that blocks the fibrinogen binding site, or GRGDSP peptide inhibited FXIIIa binding by about 95% when measured by flow cytometry; FXIIIa binding to purified GPIIb-IIIa was also inhibited by 7E3. The binding of FXIIIa to purified GPIIb-IIIa was enhanced by the addition of fibrinogen, but not by that of fibronectin or thrombospondin, suggesting that FXIIIa also binds to fibrinogen associated with the complex. These observations suggest that activated platelets bearing FXIIIa may enhance stabilization of platelet-rich thrombi through surface-localized cross-linking events.


Blood ◽  
1987 ◽  
Vol 69 (5) ◽  
pp. 1401-1403
Author(s):  
GI Johnston ◽  
EB Pickett ◽  
RP McEver ◽  
JN George

Platelet membrane changes that accompany in vivo activation may be difficult to detect if only a small fraction of circulating platelets has undergone secretion. This study describes an approach to that problem by using a method to measure the number of molecules of fluorescein-labeled antibody bound to individual platelets by flow cytometry. The platelet response to different concentrations of thrombin was determined by measuring the binding of a monoclonal antibody (S12) to GMP-140, an alpha-granule membrane protein that becomes exposed on the platelet surface during alpha-granule secretion. Unstimulated platelets bound a mean of 1,120 molecules of S12 per cell, and 93% of platelets bound less than 2,000 molecules. Platelet stimulation by 0.25 U/mL thrombin caused maximum S12 binding with a mean of 7,529 molecules per cell. Even at low concentrations of thrombin (0.025 U/mL), 5% of platelets were maximally activated, binding over 7,000 molecules of S12 per cell. Conversely, at 0.25 U/mL thrombin, 13% of platelets continued to bind less than 2,000 molecules of S12 per cell. A mixture of as little as 5% thrombin-activated platelets with unstimulated platelets could be detected by this method. Therefore flow cytometry offers an important tool for investigating patients who may have circulating activated platelets as part of a disorder predisposing to thrombosis or hemorrhage.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4446-4452 ◽  
Author(s):  
Gaëtan Berger ◽  
Daqing W. Hartwell ◽  
Denisa D. Wagner

Abstract P-selectin is an adhesion receptor for leukocytes expressed by activated platelets and endothelial cells. To assess a possible role of P-selectin in platelet clearance, we adapted an in vivo biotinylation technique in mice. Wild-type and P-selectin–deficient mice were infused with N-hydroxysuccinimido biotin. The survival of biotinylated platelets was followed by flow cytometry after labeling with fluorescent streptavidin. Both wild-type and P-selectin–deficient platelets presented identical life spans of about 4.7 days, suggesting that P-selectin does not play a role in platelet turnover. When biotinylated platelets were isolated, activated with thrombin, and reinjected into mice, the rate of platelet clearance was unchanged. In contrast, storage of platelets at 4°C caused a significant reduction in their life span in vivo but again no significant differences were observed between the two genotypes. The infused thrombin-activated platelets rapidly lost their surface P-selectin in circulation, and this loss was accompanied by the simultaneous appearance of a 100-kD P-selectin fragment in the plasma. This observation suggests that the platelet membrane P-selectin was shed by cleavage. In conclusion, this study shows that P-selectin, despite its binding to leukocytes, does not mediate platelet clearance. However, the generation of a soluble form of P-selectin on platelet activation may have biological implications in modulating leukocyte recruitment or thrombus growth.


2021 ◽  
Vol 9 (2) ◽  
pp. e002026
Author(s):  
Daniele Caracciolo ◽  
Caterina Riillo ◽  
Andrea Ballerini ◽  
Giuseppe Gaipa ◽  
Ludovic Lhermitte ◽  
...  

BackgroundT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a poor cure rate for relapsed/resistant patients. Due to the lack of T-cell restricted targetable antigens, effective immune-therapeutics are not presently available and the treatment of chemo-refractory T-ALL is still an unmet clinical need. To develop novel immune-therapy for T-ALL, we generated an afucosylated monoclonal antibody (mAb) (ahuUMG1) and two different bispecific T-cell engagers (BTCEs) against UMG1, a unique CD43-epitope highly and selectively expressed by T-ALL cells from pediatric and adult patients.MethodsUMG1 expression was assessed by immunohistochemistry (IHC) on a wide panel of normal tissue microarrays (TMAs), and by flow cytometry on healthy peripheral blood/bone marrow-derived cells, on 10 different T-ALL cell lines, and on 110 T-ALL primary patient-derived cells. CD43-UMG1 binding site was defined through a peptide microarray scanning. ahuUMG1 was generated by Genetic Glyco-Engineering technology from a novel humanized mAb directed against UMG1 (huUMG1). BTCEs were generated as IgG1-(scFv)2 constructs with bivalent (2+2) or monovalent (2+1) CD3ε arms. Antibody dependent cellular cytotoxicity (ADCC), antibody dependent cellular phagocytosis (ADCP) and redirected T-cell cytotoxicity assays were analysed by flow cytometry. In vivo antitumor activity of ahUMG1 and UMG1-BTCEs was investigated in NSG mice against subcutaneous and orthotopic xenografts of human T-ALL.ResultsAmong 110 T-ALL patient-derived samples, 53 (48.1%) stained positive (24% of TI/TII, 82% of TIII and 42.8% of TIV). Importantly, no expression of UMG1-epitope was found in normal tissues/cells, excluding cortical thymocytes and a minority (<5%) of peripheral blood T lymphocytes. ahUMG1 induced strong ADCC and ADCP on T-ALL cells in vitro, which translated in antitumor activity in vivo and significantly extended survival of treated mice. Both UMG1-BTCEs demonstrated highly effective killing activity against T-ALL cells in vitro. We demonstrated that this effect was specifically exerted by engaged activated T cells. Moreover, UMG1-BTCEs effectively antagonized tumor growth at concentrations >2 log lower as compared with ahuUMG1, with significant mice survival advantage in different T-ALL models in vivo.ConclusionAltogether our findings, including the safe UMG1-epitope expression profile, provide a framework for the clinical development of these innovative immune-therapeutics for this still orphan disease.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1715-1715
Author(s):  
Ting-Chang Hsu ◽  
Kathleen P. Pratt ◽  
Arthur R. Thompson

Abstract The C domains of factor VIII contain the primary binding site for the cofactor, activated factor VIII, to interact with the phospholipid membranes, including those on the platelet surface. Isolated C2 domain has been shown to bind to phosphotidyl-L-serine-rich lipids and platelets; under flow cytometry, binding to activated platelets was confirmed. For comparison, C1C2, expressed in E.coli, was prepared with up to mg quantities isolated. Fresh, gel-filtered platelets were then studied in a flow cytometer either with or without activation by the thrombin receptor peptide, SFLLRN-amide. Depending upon the conditions, up to 80% of the platelets could be stained with a monoclonal antibody to C2 (ESH8) that is known not to compete with lipid or von Willebrand factor binding. The results were confirmed using a S2296C mutant C1C2 where the free suflhydryl group was either biotinylated and detected by fluorescein labeled streptavidin or directly labeled with fluorescein. As shown in the figure, essentially all platelets bound directly fluorescein labeled C1C2. Using standardized, labeled microbeads, it was estimated that there are 7000–10,000 binding sites per platelet. After platelet activation, the number of platelets binding C1C2 increased with all three detecting systems but only by 15–30%. In contrast, binding of isolated C2, as determined either by ESH8 or as a C2296 biotinylated species, was much lower when the same molar amounts were added, and was primarily detectable following platelet activation. C1C2 binding appeared independent of von Willebrand factor as platelets from two unrelated subjects with severe, type 3 von Willebrand disease gave the same patterns on flow cytometry as seen in platelets from normal subjects. ESH4, a monoclonal antibody known to inhibit binding of C2 to lipid membranes effectively competed C1C2 binding to platelets. Although an indirect alteration the C2 domain conformation cannot be excluded, results support a direct role of C1 in enhancing platelet binding. Binding of direct florescein-labeled C1C2 to SFLLRN-amide-activated platelets Binding of direct florescein-labeled C1C2 to SFLLRN-amide-activated platelets


Blood ◽  
1987 ◽  
Vol 69 (5) ◽  
pp. 1401-1403 ◽  
Author(s):  
GI Johnston ◽  
EB Pickett ◽  
RP McEver ◽  
JN George

Abstract Platelet membrane changes that accompany in vivo activation may be difficult to detect if only a small fraction of circulating platelets has undergone secretion. This study describes an approach to that problem by using a method to measure the number of molecules of fluorescein-labeled antibody bound to individual platelets by flow cytometry. The platelet response to different concentrations of thrombin was determined by measuring the binding of a monoclonal antibody (S12) to GMP-140, an alpha-granule membrane protein that becomes exposed on the platelet surface during alpha-granule secretion. Unstimulated platelets bound a mean of 1,120 molecules of S12 per cell, and 93% of platelets bound less than 2,000 molecules. Platelet stimulation by 0.25 U/mL thrombin caused maximum S12 binding with a mean of 7,529 molecules per cell. Even at low concentrations of thrombin (0.025 U/mL), 5% of platelets were maximally activated, binding over 7,000 molecules of S12 per cell. Conversely, at 0.25 U/mL thrombin, 13% of platelets continued to bind less than 2,000 molecules of S12 per cell. A mixture of as little as 5% thrombin-activated platelets with unstimulated platelets could be detected by this method. Therefore flow cytometry offers an important tool for investigating patients who may have circulating activated platelets as part of a disorder predisposing to thrombosis or hemorrhage.


1997 ◽  
Vol 36 (08) ◽  
pp. 259-264
Author(s):  
N. Topuzović

Summary Aim: The purpose of this study was to investigate the changes in blood activity during rest, exercise and recovery, and to assess its influence on left ventricular (LV) volume determination using the count-based method requiring blood sampling. Methods: Forty-four patients underwent rest-stress radionuclide ventriculography; Tc-99m-human serum albumin was used in 13 patients (Group I), red blood cells was labeled using Tc-99m in 17 patients (Group II) in vivo, and in 14 patients (Group III) by modified in vivo/in vitro method. LV volumes were determined by a count-based method using corrected count rate in blood samples obtained during rest, peak exercise and after recovery. Results: In group I at stress, the blood activity decreased by 12.6 ± 5.4%, p <0.05, as compared to the rest level, and increased by 25.1 ± 6.4%, p <0.001, and 12.8 ± 4.5%, p <0.05, above the resting level in group II and III, respectively. This had profound effects on LV volume determinations if only one rest blood aliquot was used: during exercise, the LV volumes significantly decreased by 22.1 ± 9.6%, p <0.05, in group I, whereas in groups II and III it was significantly overestimated by 32.1 ± 10.3%, p <0.001, and 10.7 ± 6.4%, p <0.05, respectively. The changes in blood activity between stress and recovery were not significantly different for any of the groups. Conclusion: The use of only a single blood sample as volume aliquot at rest in rest-stress studies leads to erroneous estimation of cardiac volumes due to significant changes in blood radioactivity during exercise and recovery.


1991 ◽  
Vol 65 (04) ◽  
pp. 432-437 ◽  
Author(s):  
A W J Stuttle ◽  
M J Powling ◽  
J M Ritter ◽  
R M Hardisty

SummaryThe anti-platelet monoclonal antibody P256 is currently undergoing development for in vivo detection of thrombus. We have examined the actions of P256 and two fragments on human platelet function. P256, and its divalent fragment, caused aggregation at concentrations of 10−9−3 × 10−8 M. A monovalent fragment of P256 did not cause aggregation at concentrations up to 10−7 M. P256–induced platelet aggregation was dependent upon extracellular calcium ions as assessed by quin2 fluorescence. Indomethacin partially inhibited platelet aggregation and completely inhibited intracellular calcium mobilisation. Apyrase caused partial inhibition of aggregation. Aggregation induced by the divalent fragment was dependent upon fibrinogen and was inhibited by prostacyclin. Aggregation induced by the whole antibody was only partially dependent upon fibrinogen, but was also inhibited by prostacyclin. P256 whole antibody was shown, by flow cytometry, to induce fibrinogen binding to indomethacin treated platelets. Monovalent P256 was shown to be a specific antagonist for aggregation induced by the divalent forms. In–111–labelled monovalent fragment bound to gel-filtered platelets in a saturable and displaceable manner. Monovalent P256 represents a safer form for in vivo applications


Sign in / Sign up

Export Citation Format

Share Document