Palladium-Catalyzed Anti-Markovnikov Oxidation of Aromatic and Aliphatic Alkenes to Terminal Acetals and Aldehydes

Synthesis ◽  
2020 ◽  
Author(s):  
Yasuyuki Ura

AbstractCatalytic anti-Markovnikov (AM) oxidation of terminal alkenes can provide terminally oxyfunctionalized organic compounds. This short review mainly summarizes our recent progress on the Pd-catalyzed AM oxidations of aromatic and aliphatic terminal alkenes to give terminal acetals (oxidative acetalization) and aldehydes (Wacker-type oxidation), along with related reports. These reactions demonstrate the efficacy of the PdCl2(MeCN)2/CuCl/electron-deficient cyclic alkenes/O2 catalytic system. Notably, electron-deficient cyclic alkenes such as p-benzoquinones (BQs) and maleimides are key additives that facilitate nucleophilic attack of oxygen nucleophiles on coordinated terminal alkenes and enhance the AM selectivity. BQs also function to oxidize Pd(0) depending on the reaction conditions. Several other factors that improve the AM selectivity, such as the steric demand of the nucleo­philes, slow substrate addition, and halogen-directing groups, are also discussed.1 Introduction2 Anti-Markovnikov Oxidation of Aromatic Alkenes to Terminal Acetals­3 Anti-Markovnikov Oxidation of Aromatic Alkenes to Aldehydes4 Anti-Markovnikov Oxidation of Aliphatic Alkenes to Terminal Acetals­5 Anti-Markovnikov Oxidation of Aliphatic Alkenes to Aldehydes6 Conclusion

Synthesis ◽  
2019 ◽  
Vol 51 (24) ◽  
pp. 4549-4567 ◽  
Author(s):  
Noam Levi ◽  
Dafna Amir ◽  
Eytan Gershonov ◽  
Yossi Zafrani

Recent years have witnessed a growing interest in the development of novel synthetic methods and new reagents for the synthesis of difluoromethylated compounds. Dozens of studies have been published on this topic each year over the past few years. These studies are focused on direct and indirect difluoromethylation of various organic functionalities via nucleophilic-, electrophilic-, radical-, carbene- or metal-mediated mechanisms. The present short review covers the very recent studies, published between mid-2017 and early 2019, on the synthesis of compounds containing a CF2H group. A brief summary of the physicochemical properties and medicinal applications of difluoromethylated compounds is also included.1 Introduction2 Nucleophilic Difluoromethylation2.1 Metal-Mediated Nucleophilic Difluoromethylation2.2 Non-Metal Difluoromethyl Nucleophiles3 Radical Difluoromethylation3.1 Metal-Induced Radical Difluoromethylation3.2 Non-Metal-Induced Radical Difluoromethylation3.3 Electrochemically Induced Radical Difluoromethylation4 Carbene-Based Difluoromethylation4.1 Metal-Induced Carbene Difluoromethylation4.2 Non-Metal-Induced Difluoromethyl Carbenes5 Cross-Coupling Difluoromethylation5.1 Palladium-Catalyzed Difluoromethylation5.2 Nickel-Catalyzed Difluoromethylation5.3 Copper-Mediated Difluoromethylation5.4 Iron-Catalyzed Difluoromethylation5.5 Gold-Mediated Difluoromethylation6 Electrophilic Difluoromethylation7 Other Examples7.1 A Difluoromethyl-Borane Complex7.2 A Tellurium Difluoromethyl Derivative8 Summary


Synthesis ◽  
2016 ◽  
Vol 48 (19) ◽  
pp. 3309-3316 ◽  
Author(s):  
Florent Le Boucher d’Herouville ◽  
Anthony Millet ◽  
Michelangelo Scalone ◽  
Véronique Michelet

The preparation of novel MeOBIPHEP atropisomeric chiral congener ligands via an efficient palladium-catalyzed P–C coupling key step is described. We demonstrate that these palladium-catalyzed conditions are compatible with the brominated MeOBIPHEP backbone. The reaction conditions for asymmetric silver-catalyzed cycloisomerization of γ-allenols were optimized, leading to the first enantioselective catalytic system employing atropisomeric diphosphine ligands as the chiral inducer. The process follows a major 5-exo cyclization via addition of the alcohol moiety to the π-activated allenyl intermediate, leading to vinyltetrahydrofurans with enantiomeric ratios up to 91.5:8.5.


2017 ◽  
Vol 53 (37) ◽  
pp. 5151-5154 ◽  
Author(s):  
Jiangyan Jing ◽  
Xiaohong Huo ◽  
Jiefeng Shen ◽  
Jingke Fu ◽  
Qinghua Meng ◽  
...  

Allylic alcohols and allylic amines were directly utilized in a Pd-catalyzed hydrogen-bond-activated allylic amination under mild reaction conditions in the absence of any additives. The catalytic system is compatible with a variety of functional groups and can be used to prepare a wide range of linear allylic amines in good to excellent yields.


Synthesis ◽  
2021 ◽  
Author(s):  
Wei-Wei Liao ◽  
Shu-Qiang Cui

AbstractTransition-metal-catalyzed C–H bond addition to nitriles has emerged as a powerful synthetic approach for the construction of C–C bonds in organic synthesis. Due to the merits of atom- and step-economy, as well the easy availability of the starting materials, these transformations not only deliver acyclic aryl ketone products with nitriles­ as C-building blocks, but can also be utilized for the highly efficient­ assembly of azaheterocyclic skeletons using nitriles as C–N building blocks. This short review summarizes recent progress on transition-metal-catalyzed C–C bond-forming reactions based on C(sp2)–H and C(sp3)–H additions to nitriles.1 Introduction2 Palladium-Catalyzed C–H Addition to Nitriles2.1 Palladium-Catalyzed C–H Addition to Nitriles for the Preparation of Ketone (Imine) Products2.2 Palladium-Catalyzed C–H Addition to Nitriles for the Preparation of Azaheterocycles2.3 Palladium-Catalyzed C–H Addition to Nitriles/1,2-Rearangement3 Other Transition-Metal-Catalyzed C–H Additions to Nitriles4 Summary and Outlook


Synlett ◽  
2017 ◽  
Vol 29 (02) ◽  
pp. 251-255
Author(s):  
Xinpeng Jiang ◽  
Yong Liu ◽  
Lei Zhang ◽  
Jinkang Chen ◽  
Kang Cheng ◽  
...  

An efficient 1,5-cyclooctadiene–PdCl2/dicyclohexyl(2′,4′,6′-triisopropylbiphenyl-2-yl)phosphine (XPhos) catalytic system was developed for C–H allylation of polyfluoroarenes with allylic pivalates. The reactions showed excellent functional-group tolerance, good yields, and high regioselectivities. Mechanistic investigations supported a (π-allyl)palladium complex pathway through a directed oxidative addition of the allylic pivalate to palladium, followed by sequential nucleophilic attack by the polyfluorobenzene and reductive elimination. In a gram-scale reaction, a palladium loading of 0.5 mol% was enough to afford the required product in good yield.


2020 ◽  
Author(s):  
Jian Cao ◽  
Ernest Armenta ◽  
Lisa Boatner ◽  
Heta Desai ◽  
Neil Chan ◽  
...  

Bioorthogonal chemistry is a mainstay of chemoproteomic sample preparation workflows. While numerous transformations are now available, chemoproteomic studies still rely overwhelmingly on copper-catalyzed azide –alkyne cycloaddition (CuAAC) or 'click' chemistry. Here we demonstrate that gel-based activity-based protein profiling (ABPP) and mass-spectrometry-based chemoproteomic profiling can be conducted using Suzuki–Miyaura cross-coupling. We identify reaction conditions that proceed in complex cell lysates and find that Suzuki –Miyaura cross-coupling and CuAAC yield comparable chemoproteomic coverage. Importantly, Suzuki–Miyaura is also compatible with chemoproteomic target deconvolution, as demonstrated using structurally matched probes tailored to react with the cysteine protease caspase-8. Uniquely enabled by the observed orthogonality of palladium-catalyzed cross-coupling and CuAAC, we combine both reactions to achieve dual protein labeling.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mohsen A.-M. Gomaa ◽  
Huda A. Ali

Background : The reactivity of 4-(dicyanomethylene)-3-methyl-l-phenyl-2-pyrazoline-5-one DCNP 1 and its derivatives makes it valuable as a building block for the synthesis of heterocyclic compounds like pyrazolo-imidazoles, - thiazoles, spiropyridines, spiropyrroles, spiropyrans and others. As a number of publications have reported on the reactivity of DCNP and its derivatives, we compiled some features of this interesting molecule. Objective: This article aims to review the preparation of DCNP, its reactivity and application in heterocyclic and dyes synthesis. Conclusion: In this review we have provided an overview of recent progress in the chemistry of DCNP and its significance in synthesis of various classes of heterocyclic compounds and dyes. The unique reactivity of DCNP offers unprecedentedly mild reaction conditions for the generation of versatile cynomethylene dyes from a wide range of precursors including amines, α-aminocarboxylic acids, their esters, phenols, malononitriles and azacrown ethers. We anticipate that more innovative transformations involving DCNP will continue to emerge in the near future.


2021 ◽  
Author(s):  
Yusuke Ano ◽  
Natsuki Kawai ◽  
Naoto Chatani

The palladium-catalyzed 1,1-alkynylbromination of terminal alkenes with a silyl-protected alkynyl bromide is reported. The method tolerates a diverse range of alkenes including vinylarenes, acrylates, and even electronically unbiased alkene derivatives...


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 720
Author(s):  
Satomi Niwayama

Symmetric organic compounds are generally obtained inexpensively, and therefore they can be attractive building blocks for the total synthesis of various pharmaceuticals and natural products. The drawback is that discriminating the identical functional groups in the symmetric compounds is difficult. Water is the most environmentally benign and inexpensive solvent. However, successful organic reactions in water are rather limited due to the hydrophobicity of organic compounds in general. Therefore, desymmetrization reactions in aqueous media are expected to offer versatile strategies for the synthesis of a variety of significant organic compounds. This review focuses on the recent progress of desymmetrization reactions of symmetric organic compounds in aqueous media without utilizing enzymes.


Sign in / Sign up

Export Citation Format

Share Document