Is There a Role for Cartilage Imaging in Athletes?

2020 ◽  
Vol 24 (03) ◽  
pp. 246-255
Author(s):  
Asako Yamamoto ◽  
Benjamin D. Levine ◽  
Mario Padron ◽  
Christine B. Chung

AbstractThis article reviews implications for cartilage imaging in athletes in the setting of (1) acute chondral injury diagnosis, (2) evaluation and follow-up of conservative and surgical therapy, and (3) evaluation of cartilage as a surrogate for meniscal function and joint stability. Focal knee cartilage defects are common in athletic populations. Athletes with articular cartilage injury may initially be able to return to sport with conservative therapy; however, a reduction of athletic ability and progression to osteoarthritis is expected in athletes with untreated severe chondral injury. For diagnostic and pre- and postsurgical evaluation purposes, morphological magnetic resonance (MR) assessment of the articular cartilage with high-resolution protocols is crucial. Although not widely implemented for clinical use, compositional MR techniques have great potential for monitoring the development and progression of biochemical and microstructural changes in cartilage extracellular matrix before gross morphological changes occur.

2021 ◽  
Vol 9 (10_suppl5) ◽  
pp. 2325967121S0027
Author(s):  
Mia Hagen ◽  
William Hannay ◽  
Quinn Saluan ◽  
T. Sean Lynch ◽  
Robert Westermann ◽  
...  

Objectives: Articular cartilage injury has been identified as a risk factor for poor outcomes following hip arthroscopy for femoroacetabular impingement syndrome (FAI). The purpose of this study was to evaluate the efficacy of magnetic resonance imaging (MRI) in detecting cartilage defects, and to identify specific MRI findings associated with cartilage injury. Methods: All patients undergoing hip arthroscopy between February 2015 and May 2017 at one institution were enrolled in a prospective cohort. Intra-articular findings were documented at the time of surgery. MRI reports were retrospectively reviewed for radiologist-reported articular cartilage, osseous or synovial abnormalities. Sensitivity and specificity of MRI findings were calculated; multivariate logistic regression analysis determined which findings were associated with high-grade chondral damage at time of arthroscopy and used to create an online risk calculator, https://orthop.washington.edu/hiprisk/. Results: Out of a total of 598 patients who underwent hip arthroscopy, 550 had MRI reports available for review (92%). Grade III and IV cartilage injuries were reported on arthroscopy in 70 patients (13%) of average age 33 ± 13 years. On univariate analyses, individual MRI findings were not found to be sensitive in detection of articular cartilage injury (mean 22%, range 1.4% – 46%), but positive findings were highly specific (mean 90%, range 76% – 99%). Multivariate analysis revealed that older age (OR 1.09 [1.06-1.11], p < .001) and osseous findings such as subchondral cyst or edema (OR 4.77 [2.51-9.05], p <.001) were most predictive of grade III and IV defects (p < .001). An example of use of the online calculator is in Figure 1. Conclusions: MRI was a specific but not sensitive tool in diagnosing articular cartilage injury. Surgeons should be aware that osseous findings such as cysts or edema are highly predictive of full-thickness cartilage loss in FAI.


2021 ◽  
Vol 22 (5) ◽  
pp. 2666
Author(s):  
Miki Maehara ◽  
Eriko Toyoda ◽  
Takumi Takahashi ◽  
Masahiko Watanabe ◽  
Masato Sato

In the knee joint, articular cartilage injury can often lead to osteoarthritis of the knee (OAK). Currently, no point-of-care treatment can completely address OAK symptoms and regenerate articular cartilage to restore original functions. While various cell-based therapies are being developed to address OAK, exosomes containing various components derived from their cells of origin have attracted attention as a cell-free alternative. The potential for exosomes as a novel point-of-care treatment for OAK has been studied extensively, especially in the context of intra-articular treatments. Specific exosomal microRNAs have been identified as possibly effective in treating cartilage defects. Additionally, exosomes have been studied as biomarkers through their differences in body fluid composition between joint disease patients and healthy subjects. Exosomes themselves can be utilized as a drug delivery system through their manipulation and encapsulation of specific contents to be delivered to specific cells. Through the combination of exosomes with tissue engineering, novel sustained release drug delivery systems are being developed. On the other hand, many of the functions and activities of exosomes are unknown and challenges remain for clinical applications. In this review, the possibilities of intra-articular treatments utilizing exosomes and the challenges in using exosomes in therapy are discussed.


2005 ◽  
Vol 17 (05) ◽  
pp. 243-251 ◽  
Author(s):  
HONGSEN CHIANG ◽  
YI-YOU HUANG ◽  
CHING-CHUAN JIANG

Articular cartilage defects heal poorly and lead to consequences as osteoarthritis. Clinical experience has indicated that no existing medication would substantially promote the healing process, and the cartilage defect requires surgical replacement. Allograft decays quickly for multiple reasons including the preparation process and immune reaction, and the outcome is disappointing. The extreme shortage of sparing in articular cartilage has much discouraged the use of autograft, which requires modification. The concept that constructs a chondral or osteochondral construct for the replacement of injured native tissue introduces that of tissue engineering. Limited number of cells are expanded either in vitro or in vivo, and resided temporally on a scaffold of biomaterial, which also acts as a vehicle to transfer the cells to the recipient site. Three core elements constitute this technique: the cell, a biodegradable scaffold, and an environment suitable for cells to present their proposed activity. Modern researches have kept updating those elements for a better performance of such cultivation of living tissue.


2021 ◽  
pp. 036354652110030
Author(s):  
Hailey P. Huddleston ◽  
Atsushi Urita ◽  
William M. Cregar ◽  
Theodore M. Wolfson ◽  
Brian J. Cole ◽  
...  

Background: Osteochondral allograft transplantation is 1 treatment option for focal articular cartilage defects of the knee. Large irregular defects, which can be treated using an oblong allograft or multiple overlapping allografts, increase the procedure’s technical complexity and may provide suboptimal cartilage and subchondral surface matching between donor grafts and recipient sites. Purpose: To quantify and compare cartilage and subchondral surface topography mismatch and cartilage step-off for oblong and overlapping allografts using a 3-dimensional simulation model. Study Design: Controlled laboratory study. Methods: Human cadaveric medial femoral hemicondyles (n = 12) underwent computed tomography and were segmented into cartilage and bone components using 3-dimensional reconstruction and modeling software. Segments were then exported into point-cloud models. Modeled defect sizes of 17 × 30 mm were created on each recipient hemicondyle. There were 2 types of donor allografts from each condyle utilized: overlapping and oblong. Grafts were virtually harvested and implanted to optimally align with the defect to provide minimal cartilage surface topography mismatch. Least mean squares distances were used to measure cartilage and subchondral surface topography mismatch and cartilage step-off. Results: Cartilage and subchondral topography mismatch for the overlapping allograft group was 0.27 ± 0.02 mm and 0.80 ± 0.19 mm, respectively. In comparison, the oblong allograft group had significantly increased cartilage (0.62 ± 0.43 mm; P < .001) and subchondral (1.49 ± 1.10 mm; P < .001) mismatch. Cartilage step-off was also found to be significantly increased in the oblong group compared with the overlapping group ( P < .001). In addition, overlapping allografts more reliably provided a significantly higher percentage of clinically acceptable (0.5- and 1-mm thresholds) cartilage surface topography matching (overlapping: 100% for both 0.5 and 1 mm; oblong: 90% for 1 mm and 56% for 0.5 mm; P < .001) and cartilage step-off (overlapping: 100% for both 0.5 and 1 mm; oblong: 86% for 1 mm and 12% for 0.5 mm; P < .001). Conclusion: This computer simulation study demonstrated improved topography matching and decreased cartilage step-off with overlapping osteochondral allografts compared with oblong osteochondral allografts when using grafts from donors that were not matched to the recipient condyle by size or radius of curvature. These findings suggest that overlapping allografts may be superior in treating large, irregular osteochondral defects involving the femoral condyles with regard to technique. Clinical Relevance: This study suggests that overlapping allografts may provide superior articular cartilage surface topography matching compared with oblong allografts and do so in a more reliable fashion. Surgeons may consider overlapping allografts over oblong allografts because of the increased ease of topography matching during placement.


Author(s):  
Zhong Li ◽  
Yikang Bi ◽  
Qi Wu ◽  
Chao Chen ◽  
Lu Zhou ◽  
...  

AbstractTo evaluate the performance of a composite scaffold of Wharton’s jelly (WJ) and chondroitin sulfate (CS) and the effect of the composite scaffold loaded with human umbilical cord mesenchymal stem cells (hUCMSCs) in repairing articular cartilage defects, two experiments were carried out. The in vitro experiments involved identification of the hUCMSCs, construction of the biomimetic composite scaffolds by the physical and chemical crosslinking of WJ and CS, and testing of the biomechanical properties of both the composite scaffold and the WJ scaffold. In the in vivo experiments, composite scaffolds loaded with hUCMSCs and WJ scaffolds loaded with hUCMSCs were applied to repair articular cartilage defects in the rat knee. Moreover, their repair effects were evaluated by the unaided eye, histological observations, and the immunogenicity of scaffolds and hUCMSCs. We found that in vitro, the Young’s modulus of the composite scaffold (WJ-CS) was higher than that of the WJ scaffold. In vivo, the composite scaffold loaded with hUCMSCs repaired rat cartilage defects better than did the WJ scaffold loaded with hUCMSCs. Both the scaffold and hUCMSCs showed low immunogenicity. These results demonstrate that the in vitro construction of a human-derived WJ-CS composite scaffold enhances the biomechanical properties of WJ and that the repair of knee cartilage defects in rats is better with the composite scaffold than with the single WJ scaffold if the scaffold is loaded with hUCMSCs.


2013 ◽  
Vol 815 ◽  
pp. 345-349 ◽  
Author(s):  
Ching Wen Hsu ◽  
Ping Liu ◽  
Song Song Zhu ◽  
Feng Deng ◽  
Bi Zhang

Here we reported a combined technique for articular cartilage repair, consisting of bone arrow mesenchymal stem cells (BMMSCs) and poly (dl-lactide-co-glycolide-b-ethylene glycol-b-dl-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers carried with tissue growth factor (TGF-belat1). In the present study, BMMSCs seeded on PLGA-PEG-PLGA with were incubated in vitro, carried or not TGF-belta1, Then the effects of the composite on repair of cartilage defect were evaluated in rabbit knee joints in vivo. Full-thickness cartilage defects (diameter: 5 mm; depth: 3 mm) in the patellar groove were either left empty (n=18), implanted with BMMSCs/PLGA (n=18), TGF-belta1 modified BMMSCs/PLGA-PEG-PLGA. The defect area was examined grossly, histologically at 6, 24 weeks postoperatively. After implantation, the BMMSCs /PLGA-PEG-PLGA with TGF-belta1 group showed successful hyaline-like cartilage regeneration similar to normal cartilage, which was superior to the other groups using gross examination, qualitative and quantitative histology. These findings suggested that a combination of BMMSCs/PLGA-PEG-PLGA carried with tissue growth factor (TGF-belat1) may be an alternative treatment for large osteochondral defects in high loading sites.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Hai-Ying Liu ◽  
Hang-Tian Duan ◽  
Chun-Qiu Zhang ◽  
Wei Wang

COMSOL finite element software was used to establish a solid-liquid coupling biphasic model of articular cartilage and a microscopic model of chondrocytes, using modeling to take into account the shape and number of chondrocytes in cartilage lacuna in each layer. The effects of cyclic loading at different frequencies on the micromechanical environment of chondrocytes in different regions of the cartilage were studied. The results showed that low frequency loading can cause stress concentration of superficial chondrocytes. Moreover, along with increased frequency, the maximum value of stress response curve of chondrocytes decreased, while the minimum value increased. When the frequency was greater than 0.2 Hz, the extreme value stress of response curve tended to be constant. Cyclic loading had a large influence on the distribution of liquid pressure in chondrocytes in the middle and deep layers. The concentration of fluid pressure changed alternately from intracellular to peripheral in the middle layer. Both the range of liquid pressure in the upper chondrocytes and the maximum value of liquid pressure in the lower chondrocytes in the same lacunae varied greatly in the deep layer. At the same loading frequency, the elastic modulus of artificial cartilage had little effect on the mechanical environment of chondrocytes.


Sign in / Sign up

Export Citation Format

Share Document