scholarly journals Outcome of Major Hemorrhage at a Major Cardiothoracic Center in Patients with Activated Major Hemorrhage Protocol versus Nonactivated Protocol

2021 ◽  
Vol 47 (01) ◽  
pp. 074-083
Author(s):  
Kathryn W. Chang ◽  
Steve Owen ◽  
Michaela Gaspar ◽  
Mike Laffan ◽  
Deepa R. J. Arachchillage

AbstractThis study aimed to determine the impact of major hemorrhage (MH) protocol (MHP) activation on blood administration and patient outcome at a UK major cardiothoracic center. MH was defined in patients (> 16 years) as those who received > 5 units of red blood cells (RBCs) in < 4 hours, or > 10 units in 24 hours. Data were collected retrospectively from patient electronic records and hospital transfusion databases recording issue of blood products from January 2016 to December 2018. Of 134 patients with MH, 24 had activated MHP and 110 did not have activated MHP. Groups were similar for age, sex, baseline hemoglobin, platelet count, coagulation screen, and renal function with no difference in the baseline clinical characteristics. The total number of red cell units (median and [IQR]) transfused was no different in the patients with activated (7.5 [5–11.75]) versus nonactivated (9 [6–12]) MHP (p = 0.35). Patients in the nonactivated MHP group received significantly higher number of platelet units (median: 3 vs. 2, p = 0.014), plasma (median: 4.5 vs. 1.5, p = 0.0007), and cryoprecipitate (median: 2 vs. 1, p = 0.008). However, activation of MHP was associated with higher mortality at 24 hours compared with patients with nonactivation of MHP (33.3 vs. 10.9%, p = 0.005) and 30 days (58.3 vs. 30.9%, p = 0.01). The total RBC and platelet (but not fresh frozen plasma [FFP]) units received were higher in deceased patients than in survivors. Increased mortality was associated with a higher RBC:FFP ratio. Only 26% of patients received tranexamic acid and these patients had higher mortality at 30 days but not at 24 hours. Deceased patients at 30 days had higher levels of fibrinogen than those who survived (median: 2.4 vs. 1.8, p = 0.01). Patients with activated MHP had significantly higher mortality at both 24 hours and 30 days despite lack of difference in the baseline characteristics of the patients with activated MHP versus nonactivated MHP groups. The increased mortality associated with a higher RBC:FFP ratio suggests dilutional coagulopathy may contribute to mortality, but higher fibrinogen at baseline was not protective.

Author(s):  
Rosita Linda ◽  
Devita Ninda

Each year more than 41,000 blood donations are needed every day and 30 million blood components are transfused. Blood products that can be transfused include Packed Red Cells (PRC), Whole Blood (WB), Thrombocyte Concentrate (TC), Fresh Frozen Plasma (FFP). Monitoring Hemoglobin (Hb) after transfusion is essential for assessing the success of a transfusion. The time factor after transfusion for Hemoglobin (Hb) examination needs to be established, analyze to judge the success of a blood transfusion which is performed. The aim of this study was to analyze the differences in changes of hemoglobin between 6-12 hours, and 12-24 hours after-transfusion. This study was retrospective observational using secondary data. The subjects were patients who received PRC, and WBC transfusion. At 6-12, and 12-24 hours after-transfusion, hemoglobin, RBC, and hematocrit were measured. Then the data were analyzed by unpaired t-test. The collected data included the results of the Hb pre-transfusion, 6-12, and 12-24 hours after-transfusion. The subjects of this study were 98 people. The administration of transfusion increased by 10-30% in hemoglobin concentration at 6-12 hours after-transfusion. While at 12-24 hours after-transfusion, hemoglobin after-transfusion increased 15-37% from the baseline. Hemoglobin values were not different at any of the defined after-transfusion times (p = 0.76 (p>0.05)). Hemoglobin values were not different at 6-12 hours, and 12-24 hours after-transfusion.    Keywords: Hemoglobin, measurement, after-transfusion 


2021 ◽  
pp. 175045892095066
Author(s):  
Minna Kallioinen ◽  
Mika Valtonen ◽  
Marko Peltoniemi ◽  
Ville-Veikko Hynninen ◽  
Tuukka Saarikoski ◽  
...  

Since 2013, rotational thromboelastometry has been available in our hospital to assess coagulopathy. The aim of the study was to retrospectively evaluate the effect of thromboelastometry testing in cardiac surgery patients. Altogether 177 patients from 2012 and 177 patients from 2014 were included. In 2014, the thromboelastometry testing was performed on 56 patients. The mean blood drainage volume decreased and the number of patients receiving platelets decreased between 2012 and 2014. In addition, the use of fresh frozen plasma units decreased, and the use of prothrombin complex concentrate increased in 2014. When studied separately, the patients with a thromboelastometry testing received platelets, fresh frozen plasma, fibrinogen and prothrombin complex concentrate more often, but smaller amounts of red blood cells. In conclusion, after implementing the thromboelastometry testing to the practice, the blood products were given more cautiously overall. The use of thromboelastometry testing was associated with increased possibility to receive coagulation product transfusions. However, it appears that thromboelastometry testing was mostly used to assist in management of major bleeding.


Blood ◽  
2009 ◽  
Vol 114 (25) ◽  
pp. 5146-5151 ◽  
Author(s):  
Lesleigh S. Abbott ◽  
Mariana Deevska ◽  
Conrad V. Fernandez ◽  
David Dix ◽  
Victoria E. Price ◽  
...  

Abstract Asparaginase (ASP) therapy is associated with depletion of antithrombin (AT) and fibrinogen (FG). Potential toxicities include central nervous system thrombosis (CNST) and hemorrhage. Historical practice at the Izaak Walton Killam Health Centre (IWK) involves measuring AT and FG levels after ASP administration and transfusing fresh-frozen plasma (FFP) or cryoprecipitate (CRY) to prevent thrombotic and hemorrhagic complications. To determine whether this reduced these complications in children with acute lymphoblastic leukemia (ALL), incidence, outcome, and clinical characteristics of ASP-related CNST in ALL patients at IWK were compared with a similar cohort from BC Children's Hospital (BCCH), where prophylaxis was not performed. Costs associated with preventative versus expectant management were estimated. From 1990 to 2005, 240 patients were treated at IWK and 479 at BCCH. Seven BCCH patients developed venous CNST (1.5%), compared with none at IWK. CNST occurred exclusively during induction. Six patients received anticoagulation and continued ASP. All 7 patients remain in remission. National Cancer Institute high-risk ALL predicted CNST risk (P = .02), whereas sex, age, race, and body mass index did not. Neither FFP nor CRY protected against CNST, suggesting prophylaxis is unwarranted for unselected ALL patients. However, prophylactic replacement for HR patients in induction may be cost-effective.


Author(s):  
Alison Smith

The transfusion of blood products may be required in the pre- and post-operative periods. However, there are inherent risks associated with blood transfusion, and there is not an unlimited supply of blood donations available. When a patient is anaemic, red blood cells should be transfused to maintain the oxygen-carrying capacity of blood. Blood products, such as platelets and fresh frozen plasma, are transfused to correct a coagulopathy and during major haemorrhage. This chapter reviews the physiology of blood, including ABO compatibility and rhesus status, the main blood products available for transfusion, and transfusion policy, including the treatment of major haemorrhage and the refusal of blood products.


1990 ◽  
Vol 63 (01) ◽  
pp. 027-030 ◽  
Author(s):  
Maureen Andrew ◽  
Barbara Schmidt ◽  
Lesley Mitchell ◽  
Bosco Paes ◽  
Frederick Ofosu

SummaryThe ability to generate thrombin is decreased and delayed in plasma from the healthy newborn infant compared to the adult. Only 30 to 50% of peak adult thrombin activity can be produced in neonatal plasma. To test whether this observation can be explained by the low neonatal levels of the contact or vitamin K dependent factors, we measured neonatal thrombin generation after raising the concentration of these factors to adult values. We also determined whether the addition of a variety of blood products to neonatal plasma improved thrombin generation. An amidolytic method was used to quantitate intrinsic (APTT) and extrinsic (PT) pathway thrombin generation in defibrinated pooled cord plasma from healthy term infants. Added individually, factors VII, IX, X or the contact factors (CF) failed to alter the rate or the total amount of thrombin generated in neonatal plasma. In contrast, the addition of prothrombin increased the total amount of thrombin generated to above adult values in both the APTT and the PT systems but did not alter the rate of thrombin generation. The rate of thrombin generation in cord plasma shortened after a combination of II, IX, X and CF was added to the APTT system or II, VII and X to the PT system. In both systems, the total amount of thrombin generated was linearly related to the initial prothrombin concentration. Each of fresh frozen plasma, cryoprecipitate, plasma from platelet concentrates, or factor IX concentrate (in amounts used therapeutically) caused an increase in the total amount of thrombin generated which was related to the increase in prothrombin concentration. Thus, the total amount of thrombin generated in newborn plasma is critically dependent on the prothrombin concentration whereas the rate at which thrombin is generated is dependent on the levels of many other coagulation proteins in combination.


Author(s):  
Richard Telford

This chapter discusses the anaesthetic uses of blood products and other fluids. It begins with a discussion of blood products (red cells, platelets, fresh frozen plasma, and so on). It goes on to describe blood conservation techniques such as cell salvage. Massive transfusion is discussed with its protocol. The problems posed by Jehovah’s Witnesses who refuse blood products are explored. The chapter concludes with a discussion of fluid and electrolyte therapy.


Author(s):  
Drew Provan ◽  
Trevor Baglin ◽  
Inderjeet Dokal ◽  
Johannes de Vos

Introduction - Using the blood transfusion laboratory - Transfusion of red blood cells - Platelet transfusion - Fresh frozen plasma - Intravenous immunoglobulin - Transfusion transmitted infections - Irradiated blood products - Strategies for reducing blood transfusion in surgery - Maximum surgical blood ordering schedule (MSBOS) - Patients refusing blood transfusion for religious reasons, i.e. Jehovah’s Witnesses


2020 ◽  
Vol 132 (1) ◽  
pp. 95-106 ◽  
Author(s):  
Audrey Dieu ◽  
Maria Rosal Martins ◽  
Stephane Eeckhoudt ◽  
Amine Matta ◽  
David Kahn ◽  
...  

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background In congenital cardiac surgery, priming cardiopulmonary bypass (CPB) with fresh frozen plasma (FFP) is performed to prevent coagulation abnormalities. The hypothesis was that CPB priming with crystalloids would be different compared with FFP in terms of bleeding and/or need for blood product transfusion. Methods In this parallel-arm double-blinded study, patients weighing between 7 and 15 kg were randomly assigned to a CPB priming with 15 ml · kg−1 PlasmaLyte or 15 ml · kg−1 FFP in addition to a predefined amount of packed red blood cells used in all patients. The decision to transfuse was clinical and guided by point-of-care tests. The primary endpoints included postoperative bleeding tracked by chest tubes, number of patients transfused with any additional blood products, and the total number of additional blood products administered intra- and postoperatively. The postoperative period included the first 6 h after intensive care unit arrival. Results Respectively, 30 and 29 patients in the FFP and in the crystalloid group were analyzed in an intention-to-treat basis. Median postoperative blood loss was 7.1 ml · kg−1 (5.1, 9.4) in the FFP group and 5.7 ml · kg−1 (3.8, 8.5) in the crystalloid group (P = 0.219); difference (95% CI): 1.2 (−0.7 to 3.2). The proportion of patients additionally transfused was 26.7% (8 of 30) and 37.9% (11 of 29) in the FFP and the crystalloid groups, respectively (P = 0.355; odds ratio [95% CI], 1.7 [0.6 to 5.1]). The median number of any blood products transfused in addition to priming was 0 (0, 1) and 0 (0, 2) in the FFP and crystalloid groups, respectively (P = 0.254; difference [95% CI], 0 [0 to 0]). There were no study-related adverse events. Conclusions The results demonstrate that in infants and children, priming CPB with crystalloids does not result in a different risk of postoperative bleeding and need for transfusion of allogeneic blood products.


Sign in / Sign up

Export Citation Format

Share Document