Tissue Plasminogen Activator in Central Nervous System Physiology and Pathology: From Synaptic Plasticity to Alzheimer's Disease

Author(s):  
Tamara K. Stevenson ◽  
Shannon J. Moore ◽  
Geoffrey G. Murphy ◽  
Daniel A. Lawrence

AbstractTissue plasminogen activator's (tPA) fibrinolytic function in the vasculature is well-established. This specific role for tPA in the vasculature, however, contrasts with its pleiotropic activities in the central nervous system. Numerous physiological and pathological functions have been attributed to tPA in the central nervous system, including neurite outgrowth and regeneration; synaptic and spine plasticity; neurovascular coupling; neurodegeneration; microglial activation; and blood–brain barrier permeability. In addition, multiple substrates, both plasminogen-dependent and -independent, have been proposed to be responsible for tPA's action(s) in the central nervous system. This review aims to dissect a subset of these different functions and the different molecular mechanisms attributed to tPA in the context of learning and memory. We start from the original research that identified tPA as an immediate-early gene with a putative role in synaptic plasticity to what is currently known about tPA's role in a learning and memory disorder, Alzheimer's disease. We specifically focus on studies demonstrating tPA's involvement in the clearance of amyloid-β and neurovascular coupling. In addition, given that tPA has been shown to regulate blood–brain barrier permeability, which is perturbed in Alzheimer's disease, this review also discusses tPA-mediated vascular dysfunction and possible alternative mechanisms of action for tPA in Alzheimer's disease pathology.

2016 ◽  
Vol 60 (3) ◽  
pp. 305-315 ◽  
Author(s):  
Kathryn M. Munro ◽  
Amelia Nash ◽  
Martina Pigoni ◽  
Stefan F. Lichtenthaler ◽  
Jenny M. Gunnersen

Brain Repair ◽  
1990 ◽  
pp. 99-112
Author(s):  
Dan Lindholm ◽  
Christine Bandtlow ◽  
Matthias Spranger ◽  
Bastian Hengerer ◽  
Michael Meyer ◽  
...  

2019 ◽  
Vol 708 ◽  
pp. 134306 ◽  
Author(s):  
Dustin Chernick ◽  
Stephanie Ortiz-Valle ◽  
Angela Jeong ◽  
Wenhui Qu ◽  
Ling Li

2010 ◽  
Vol 38 (6) ◽  
pp. 1527-1530 ◽  
Author(s):  
Joel D. Richter

Synapses, points of contact between axons and dendrites, are conduits for the flow of information in the circuitry of the central nervous system. The strength of synaptic transmission reflects the interconnectedness of the axons and dendrites at synapses; synaptic strength in turn is modified by the frequency with which the synapses are stimulated. This modulation of synaptic strength, or synaptic plasticity, probably forms the cellular basis for learning and memory. RNA metabolism, particularly translational control at or near the synapse, is one process that controls long-lasting synaptic plasticity and, by extension, memory formation and consolidation. In the present paper, I review some salient features of translational control of synaptic plasticity.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Peiqing Chen ◽  
Wenjuan Zhao ◽  
Yanjie Guo ◽  
Juan Xu ◽  
Ming Yin

CX3C chemokine ligand 1 (CX3CL1) is an intriguing chemokine belonging to the CX3C family. CX3CL1 is secreted by neurons and plays an important role in modulating glial activation in the central nervous system after binding to its sole receptor CX3CR1 which mainly is expressed on microglia. Emerging data highlights the beneficial potential of CX3CL1-CX3CR1 in the pathogenesis of Alzheimer’s disease (AD), a common progressive neurodegenerative disease, and in the progression of which neuroinflammation plays a vital role. Even so, the importance of CX3CL1/CX3CR1 in AD is still controversial and needs further clarification. In this review, we make an attempt to present a concise map of CX3CL1-CX3CR1 associated with AD to find biomarkers for early diagnosis or therapeutic interventions.


Sign in / Sign up

Export Citation Format

Share Document