Growth Stimulation and Anti-apoptotic Properties of a Novel Ursodeoxycholic Lysophosphatidylethanolamide in HepG2 cells: Implications for Treatment of Liver Diseases

2008 ◽  
Vol 46 (01) ◽  
Author(s):  
W Chamulitrat ◽  
J Burhenne ◽  
T Rehlen ◽  
W Stremmel
2018 ◽  
Vol 46 (02) ◽  
pp. 469-488 ◽  
Author(s):  
Ji Yun Jung ◽  
Sang Mi Park ◽  
Hae Li Ko ◽  
Jong Rok Lee ◽  
Chung A Park ◽  
...  

Oxidative stress induced by reactive oxygen species is the main cause of various liver diseases. This study investigated the hepatoprotective effect of Epimedium koreanum Nakai water extract (EKE) against arachidonic acid (AA)[Formula: see text][Formula: see text][Formula: see text]iron-mediated cytotoxicity in HepG2 cells and carbon tetrachloride (CCl4-)-mediated acute liver injury in mice. Pretreatment with EKE (30 and 100[Formula: see text][Formula: see text]g/mL) significantly inhibited AA[Formula: see text][Formula: see text][Formula: see text]iron-mediated cytotoxicity in HepG2 cells by preventing changes in the expression of cleaved caspase-3 and poly(ADP-ribose) polymerase. EKE attenuated hydrogen peroxide production, glutathione depletion, and mitochondrial membrane dysfunction. EKE also increased the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), transactivated anti-oxidant response element harboring luciferase activity, and induced the expression of anti-oxidant genes. Furthermore, the cytoprotective effect of EKE against AA[Formula: see text][Formula: see text][Formula: see text]iron was blocked in Nrf2 knockout cells. Ultra-performance liquid chromatography analysis showed that EKE contained icariin, icaritin, and quercetin; icaritin and quercetin were both found to protect HepG2 cells from AA[Formula: see text][Formula: see text][Formula: see text]iron via Nrf2 activation. In a CCl4-induced mouse model of liver injury, pretreatment with EKE (300[Formula: see text]mg/kg) for four consecutive days ameliorated CCl4-mediated increases in serum aspartate aminotransferase activity, histological activity index, hepatic parenchyma degeneration, and inflammatory cell infiltration. EKE also decreased the number of nitrotyrosine-, 4-hydroxynonenal-, cleaved caspase-3-, and cleaved poly(ADP-ribose) polymerase-positive cells in hepatic tissues. These results suggest EKE is a promising candidate for the prevention or treatment of oxidative stress-related liver diseases via Nrf2 activation.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Chitra Basu ◽  
Runa Sur

Hydrogen peroxide (H2O2) mediated oxidative stress leading to hepatocyte apoptosis plays a pivotal role in the pathophysiology of several chronic liver diseases. This study demonstrates that S-allyl cysteine (SAC) renders cytoprotective effects on H2O2 induced oxidative damage and apoptosis in HepG2 cells. Cell viability assay showed that SAC protected HepG2 cells from H2O2 induced cytotoxicity. Further, SAC treatment dose dependently inhibited H2O2 induced apoptosis via decreasing the Bax/Bcl-2 ratio, restoring mitochondrial membrane potential (∆Ψm), inhibiting mitochondrial cytochrome c release, and inhibiting proteolytic cleavage of caspase-3. SAC protected cells from H2O2 induced oxidative damage by inhibiting reactive oxygen species accumulation and lipid peroxidation. The mechanism underlying the antiapoptotic and antioxidative role of SAC is the induction of the heme oxygenase-1 (HO-1) gene in an NF-E2-related factor-2 (Nrf-2) and Akt dependent manner. Specifically SAC was found to induce the phosphorylation of Akt and enhance the nuclear localization of Nrf-2 in cells. Our results were further confirmed by specific HO-1 gene knockdown studies which clearly demonstrated that HO-1 induction indeed played a key role in SAC mediated inhibition of apoptosis and ROS production in HepG2 cells, thus suggesting a hepatoprotective role of SAC in combating oxidative stress mediated liver diseases.


2021 ◽  
Vol 4 (7) ◽  
pp. e202000928
Author(s):  
Gang Pan ◽  
Klev Diamanti ◽  
Marco Cavalli ◽  
Ariadna Lara Gutiérrez ◽  
Jan Komorowski ◽  
...  

Recent studies suggested that dysregulated YY1 plays a pivotal role in many liver diseases. To obtain a detailed view of genes and pathways regulated by YY1 in the liver, we carried out RNA sequencing in HepG2 cells after YY1 knockdown. A rigid set of 2,081 differentially expressed genes was identified by comparing the YY1-knockdown samples (n = 8) with the control samples (n = 14). YY1 knockdown significantly decreased the expression of several key transcription factors and their coactivators in lipid metabolism. This is illustrated by YY1 regulating PPARA expression through binding to its promoter and enhancer regions. Our study further suggest that down-regulation of the key transcription factors together with YY1 knockdown significantly decreased the cooperation between YY1 and these transcription factors at various regulatory regions, which are important in regulating the expression of genes in hepatic lipid metabolism. This was supported by the finding that the expression of SCD and ELOVL6, encoding key enzymes in lipogenesis, were regulated by the cooperation between YY1 and PPARA/RXRA complex over their promoters.


2021 ◽  
Author(s):  
Jessica Hoff ◽  
Ling Xiong ◽  
Tobias Kammann ◽  
Sophie Neugebauer ◽  
Julia M. Micheel ◽  
...  

AbstractBackground & AimsNecroptosis facilitates cell death in a controlled manner and is employed by many cell types following injury. It plays a major role in various liver diseases, albeit the cell type-specific regulation of necroptosis in the liver and especially hepatocytes has not yet been conceptualized.Approaches & ResultsHere, we demonstrate that DNA methylation suppresses RIPK3 expression in human hepatocytes and HepG2 cells. In diseases leading to cholestasis the RIPK3 expression is induced in mice and humans in a cell-type specific manner. Over-expression of RIPK3 in HepG2 cells leads immediately to RIPK3 activation by phosphorylation that is further modulated by different bile acids.ConclusionBile acids mediated RIPK3 activation facilitates the secretion and expression of IL-8 via the JNK-pathway, suggesting hepatocytes suppress RIPK3 expression to protect themselves from bile acid induced necroptosis and inflammation but in chronical liver diseases associated with cholestasis induction of RIPK3 expression may be an early event signaling danger and repair through release of IL-8.Graphical abstract


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A284-A284
Author(s):  
Kamrul M Hasan ◽  
Meher Parveen ◽  
Alondra Pena ◽  
Erick Galdamez Calles ◽  
Marvy Gergis ◽  
...  

Abstract Non-alcoholic fatty liver diseases (NAFLD) is the most common form of liver diseases in the USA with 30–40% of American being affected and about 12% with nonalcoholic steatohepatitis (NASH), a leading cause of end-stage liver diseases. NAFLD has been linked with insulin resistance, type2 diabetes, obesity, and cardiovascular diseases but molecular mechanisms underlying the development of NAFLD and its association with metabolic syndromes are poorly understood. In this study, we explored the role of CARF (collaborator of ARF) also known as CDKN2AIP, a novel gene of ARF-MDM2-p53 pathway in the development of NAFLD. It has been shown that, p53, beyond its tumor suppressor functions, can regulate the cellular glucose and lipid metabolism and its activation has been reported to induce hepatic steatosis in mice. However, as a regulator of p53 pathway, the role of CARF in the lipid metabolism and associated metabolic diseases has not been studied yet. Using high-fat diet (HFD) fed obesity mouse model of NAFLD we found that the expression of CARF along with Sirt1, pAMPK, and pACC was significantly decreased in the HFD induced fatty livers compared to control. Similarly, CARF expression was also down-regulated in palmitate (PA)-treated HepG2 cells, an in vitro model of steatosis. We also observed that shRNA mediated knockdown or lentiviral vector mediated overexpression of CARF induced or reduced the endogenous fat accumulation, respectively, in HepG2 cells, suggesting that CARF expression is negatively regulated in NAFLD. Additionally, we performed RNA seq analysis after CARF silencing in HepG2 cells and demonstrated that silencing of CARF altered the expression of genes regulating hepatic de novo lipogenesis, beta-oxidation, and lipid secretion all of which favor the accumulation of fat in the hepatocytes. Furthermore, genes associated with mitochondrial functions such as the TCA cycle and oxidative phosphorylation were also altered which could play a role in the development of NAFLD. Finally, we demonstrated that AAV mediated hepatic overexpression of CARF in HFD fed mouse model significantly reduced the fat accumulation in the liver as evident by H&E staining of liver sections and intrahepatic triglyceride level. Altogether we conclude that CARF plays a vital role in hepatic lipid metabolism and its downregulation perturbs lipid homeostasis leading to hepatic steatosis and the development of NAFLD.


Author(s):  
R. W. Tucker ◽  
N. S. More ◽  
S. Jayaraman

The mechanisms by which polypeptide growth factors Induce DNA synthesis in cultured cells is not understood, but morphological changes Induced by growth factors have been used as clues to Intracellular messengers responsible for growth stimulation. One such morphological change has been the transient disappearance of the primary cilium, a “9 + 0” cilium formed by the perinuclear centriole in interphase cells. Since calcium ionophore A23187 also produced both mitogenesis and ciliary changes, microtubule depolymerization might explain ciliary disappearance monitored by indirect immunofluorescence with anti-tubulin antibody. However, complete resorption and subsequent reformation of the primary cilium occurs at mitosis, and might also account for ciliary disappearance induced by growth factors. To settle this issue, we investigated the ultrastructure of the primary cilium using serial thin-section electron microscopy of quiescent BALB/c 3T3 cells before and after stimulation with serum.


2020 ◽  
Vol 48 (5) ◽  
pp. 2295-2305
Author(s):  
Jiawei Zhang ◽  
Dandan Li ◽  
Rui Zhang ◽  
Peng Gao ◽  
Rongxue Peng ◽  
...  

The role of miR-21 in the pathogenesis of various liver diseases, together with the possibility of detecting microRNA in the circulation, makes miR-21 a potential biomarker for noninvasive detection. In this review, we summarize the potential utility of extracellular miR-21 in the clinical management of hepatic disease patients and compared it with the current clinical practice. MiR-21 shows screening and prognostic value for liver cancer. In liver cirrhosis, miR-21 may serve as a biomarker for the differentiating diagnosis and prognosis. MiR-21 is also a potential biomarker for the severity of hepatitis. We elucidate the disease condition under which miR-21 testing can reach the expected performance. Though miR-21 is a key regulator of liver diseases, microRNAs coordinate with each other in the complex regulatory network. As a result, the performance of miR-21 is better when combined with other microRNAs or classical biomarkers under certain clinical circumstances.


2001 ◽  
Vol 120 (5) ◽  
pp. A725-A725
Author(s):  
M DORE ◽  
G REALDI ◽  
D MURA ◽  
D GRAHAM ◽  
A SEPULVEDA

Sign in / Sign up

Export Citation Format

Share Document