scholarly journals Purification, Characterization and In vitro Cytotoxicity of L-asparaginase from Withania somnifera L. Against Acute Lymphoblastic Leukemia

Planta Medica ◽  
2009 ◽  
Vol 75 (04) ◽  
Author(s):  
VP Oza ◽  
PP Parmar ◽  
RB Subramanian
Blood ◽  
1978 ◽  
Vol 52 (4) ◽  
pp. 712-718 ◽  
Author(s):  
SD Smith ◽  
EM Uyeki ◽  
JT Lowman

Abstract An assay system in vitro for the growth of malignant lymphoblastic colony-forming cells (CFC) was established. Growth of malignant myeloblastic CFC has been previously reported, but this is the first report of growth of malignant lymphoblastic CFC. Established assay systems in vitro have been very helpful in elucidating the control of growth and differentiation of both normal and malignant bone marrow cells. Lymphoblastic CFC were grown from the bone marrow aspirates of 20 children with acute lymphoblastic leukemia. Growth of these colonies was established on an agar assay system and maintained in the relative hypoxia (7% oxygen) of a Stulberg chamber. The criteria for malignancy of these colonies was based upon cellular cytochemical staining characteristics, the presence of specific cell surface markers, and the ability of these lymphoid cells to grow without the addition of a lymphoid mitogen. With this technique, specific nutritional requirements and drug sensitivities can be established in vitro, and these data may permit tailoring of individual antileukemic therapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 132-138 ◽  
Author(s):  
B Wormann ◽  
SR Mehta ◽  
AL Maizel ◽  
TW LeBien

Experiments were conducted to determine the effect of low mol wt B cell growth factor (L-BCGF) on B cell precursor acute lymphoblastic leukemia (ALL). L-BCGF induced a significant increase in 3H-TdR incorporation in 28 of 37 bone marrow aspirates from patients with B cell precursor ALL, with stimulation indices ranging from 2 to 129. Fluorescence-activated cell sorting confirmed that in five of seven patients the common acute lymphoblastic leukemia antigen (CALLA)/CD10 positive leukemic cells were responding directly to L-BCGF. L-BCGF was capable of inducing, in some patients, an increase in absolute viable cells and could also induce colony formation in vitro. The response of B cell precursor ALL was not attributable to beta IL 1, IL 2, or gamma interferon. These results indicate that the majority of B cell precursor ALL undergo a proliferative response to L-BCGF, suggesting a regulatory role for this lymphokine in the growth of B cell precursors.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5197-5197
Author(s):  
Niroshaathevi Arumuggam ◽  
Nicole Melong ◽  
Catherine K.L. Too ◽  
Jason N. Berman ◽  
H.P. Vasantha Rupasinghe

Abstract T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignant disease that accounts for about 15% of pediatric and 25% of adult ALL. Although risk stratification has provided more tailored therapy and improved the overall survival of T-ALL patients, clinical challenges such as suboptimal drug responses, morbidity from drug toxicities, and drug resistance still exist. Plant polyphenols have therapeutic efficacy as pharmacological adjuvants to help overcome these challenges. They can be acylated with fatty acids to overcome issues concerning bioavailability, such as poor intestinal absorption and low metabolic stability. Phloridzin (PZ), a flavonoid found in apple peels, was acylated with an omega-3 fatty acid, docosahexaenoic acid (DHA), to generate a novel ester called phloridzin docosahexaenoate (PZ-DHA). The cytotoxic effect of PZ-DHA was studied in the human Jurkat T-ALL cell line. PZ-DHA significantly reduced the viability and cellular ATP levels of treated cells. PZ-DHA was found to selectively induce apoptosis in Jurkat cells, while sparing normal murine T-cells. Apoptosis was further confirmed by demonstrating the ability of PZ-DHA to induce morphological alterations, DNA fragmentation, caspase activation, and the release of intracellular lactate dehydrogenase. PZ-DHA also significantly inhibited cell division in Jurkat cells. Furthermore, interferon-α-induced phosphorylation of the transcription factor, STAT3, was downregulated following PZ-DHA treatment. The in vitro efficacy of PZ-DHA was recapitulated in vivo in an established zebrafish xenograft model, where the proliferation of transplanted Jurkat cells was inhibited when PZ-DHA was added to the embryo water. Overall, these findings provide evidence for PZ-DHA as a novel therapeutic agent with activity in T-ALL. Studies examining the effect of PZ-DHA on patient-derived ALL cells engrafted in zebrafish are currently underway. Disclosures No relevant conflicts of interest to declare.


Leukemia ◽  
2004 ◽  
Vol 18 (3) ◽  
pp. 521-529 ◽  
Author(s):  
N L Ramakers-van Woerden ◽  
H B Beverloo ◽  
A J P Veerman ◽  
B M Camitta ◽  
A H Loonen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document