On Improved Projection Techniques to Support Visual Exploration of Multi-Dimensional Data Sets

2003 ◽  
Vol 2 (4) ◽  
pp. 218-231 ◽  
Author(s):  
Eduardo Tejada ◽  
Rosane Minghim ◽  
Luis Gustavo Nonato

Projection (or dimensionality reduction) techniques have been used as a means to handling the growing dimensionality of data sets as well as providing a way to visualize information coded into point relationships. Their role is essential in data interpretation and simultaneous use of different projections and their visualizations improve data understanding and increase the level of confidence in the result. For that purpose, projections should be fast to allow multiple views of the same data set. In this work we present a novel fast technique for projecting multi-dimensional data sets into bidimensional (2D) spaces that preserves neighborhood relationships. Additionally, a new technique for improving 2D projections from multi-dimensional data is presented, that helps reduce the inherent loss of information yielded by dimensionality reduction. The results are stimulating and are presented in the form of comparative visualizations against known and new 2D projection techniques. Based on the projection improvement approach presented here, a new metric for quality of projection is also given, that matches well the visual perception of quality. We discuss the implication of using improved projections in visual exploration of large data sets and the role of interaction in visualization of projected subspaces.

2017 ◽  
Vol 10 (13) ◽  
pp. 355 ◽  
Author(s):  
Reshma Remesh ◽  
Pattabiraman. V

Dimensionality reduction techniques are used to reduce the complexity for analysis of high dimensional data sets. The raw input data set may have large dimensions and it might consume time and lead to wrong predictions if unnecessary data attributes are been considered for analysis. So using dimensionality reduction techniques one can reduce the dimensions of input data towards accurate prediction with less cost. In this paper the different machine learning approaches used for dimensionality reductions such as PCA, SVD, LDA, Kernel Principal Component Analysis and Artificial Neural Network  have been studied.


2013 ◽  
Vol 7 (1) ◽  
pp. 19-24
Author(s):  
Kevin Blighe

Elaborate downstream methods are required to analyze large microarray data-sets. At times, where the end goal is to look for relationships between (or patterns within) different subgroups or even just individual samples, large data-sets must first be filtered using statistical thresholds in order to reduce their overall volume. As an example, in anthropological microarray studies, such ‘dimension reduction’ techniques are essential to elucidate any links between polymorphisms and phenotypes for given populations. In such large data-sets, a subset can first be taken to represent the larger data-set. For example, polling results taken during elections are used to infer the opinions of the population at large. However, what is the best and easiest method of capturing a sub-set of variation in a data-set that can represent the overall portrait of variation? In this article, principal components analysis (PCA) is discussed in detail, including its history, the mathematics behind the process, and in which ways it can be applied to modern large-scale biological datasets. New methods of analysis using PCA are also suggested, with tentative results outlined.


2019 ◽  
Vol 18 (4) ◽  
pp. 426-438 ◽  
Author(s):  
Wilson E Marcílio-Jr ◽  
Danilo M Eler ◽  
Rogério E Garcia ◽  
Ives R Venturini Pola

Multidimensional projection techniques provide graphical representations computed based on instance similarities to enable the analysis of abstract and possibly large data sets. However, when the data set size grows these graphical representations can hardly avoid overlap among markers. To overcome this issue, while some techniques attempt to remove overlap after multidimensional projection, some projection techniques were developed considering non-overlapping constraints. In this work, we present an analysis of four overlap removal techniques and two projection techniques considering non-overlapping. The evaluation was performed according to five metrics that consider structural and similarity relations, and based on the results we provide a guide to use a technique according to the data set and analysis goals.


Author(s):  
Lior Shamir

Abstract Several recent observations using large data sets of galaxies showed non-random distribution of the spin directions of spiral galaxies, even when the galaxies are too far from each other to have gravitational interaction. Here, a data set of $\sim8.7\cdot10^3$ spiral galaxies imaged by Hubble Space Telescope (HST) is used to test and profile a possible asymmetry between galaxy spin directions. The asymmetry between galaxies with opposite spin directions is compared to the asymmetry of galaxies from the Sloan Digital Sky Survey. The two data sets contain different galaxies at different redshift ranges, and each data set was annotated using a different annotation method. The results show that both data sets show a similar asymmetry in the COSMOS field, which is covered by both telescopes. Fitting the asymmetry of the galaxies to cosine dependence shows a dipole axis with probabilities of $\sim2.8\sigma$ and $\sim7.38\sigma$ in HST and SDSS, respectively. The most likely dipole axis identified in the HST galaxies is at $(\alpha=78^{\rm o},\delta=47^{\rm o})$ and is well within the $1\sigma$ error range compared to the location of the most likely dipole axis in the SDSS galaxies with $z>0.15$ , identified at $(\alpha=71^{\rm o},\delta=61^{\rm o})$ .


2020 ◽  
Vol 6 ◽  
Author(s):  
Jaime de Miguel Rodríguez ◽  
Maria Eugenia Villafañe ◽  
Luka Piškorec ◽  
Fernando Sancho Caparrini

Abstract This work presents a methodology for the generation of novel 3D objects resembling wireframes of building types. These result from the reconstruction of interpolated locations within the learnt distribution of variational autoencoders (VAEs), a deep generative machine learning model based on neural networks. The data set used features a scheme for geometry representation based on a ‘connectivity map’ that is especially suited to express the wireframe objects that compose it. Additionally, the input samples are generated through ‘parametric augmentation’, a strategy proposed in this study that creates coherent variations among data by enabling a set of parameters to alter representative features on a given building type. In the experiments that are described in this paper, more than 150 k input samples belonging to two building types have been processed during the training of a VAE model. The main contribution of this paper has been to explore parametric augmentation for the generation of large data sets of 3D geometries, showcasing its problems and limitations in the context of neural networks and VAEs. Results show that the generation of interpolated hybrid geometries is a challenging task. Despite the difficulty of the endeavour, promising advances are presented.


2006 ◽  
Vol 39 (2) ◽  
pp. 262-266 ◽  
Author(s):  
R. J. Davies

Synchrotron sources offer high-brilliance X-ray beams which are ideal for spatially and time-resolved studies. Large amounts of wide- and small-angle X-ray scattering data can now be generated rapidly, for example, during routine scanning experiments. Consequently, the analysis of the large data sets produced has become a complex and pressing issue. Even relatively simple analyses become difficult when a single data set can contain many thousands of individual diffraction patterns. This article reports on a new software application for the automated analysis of scattering intensity profiles. It is capable of batch-processing thousands of individual data files without user intervention. Diffraction data can be fitted using a combination of background functions and non-linear peak functions. To compliment the batch-wise operation mode, the software includes several specialist algorithms to ensure that the results obtained are reliable. These include peak-tracking, artefact removal, function elimination and spread-estimate fitting. Furthermore, as well as non-linear fitting, the software can calculate integrated intensities and selected orientation parameters.


1997 ◽  
Vol 1997 ◽  
pp. 143-143
Author(s):  
B.L. Nielsen ◽  
R.F. Veerkamp ◽  
J.E. Pryce ◽  
G. Simm ◽  
J.D. Oldham

High producing dairy cows have been found to be more susceptible to disease (Jones et al., 1994; Göhn et al., 1995) raising concerns about the welfare of the modern dairy cow. Genotype and number of lactations may affect various health problems differently, and their relative importance may vary. The categorical nature and low incidence of health events necessitates large data-sets, but the use of data collected across herds may introduce unwanted variation. Analysis of a comprehensive data-set from a single herd was carried out to investigate the effects of genetic line and lactation number on the incidence of various health and reproductive problems.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3523-3526

This paper describes an efficient algorithm for classification in large data set. While many algorithms exist for classification, they are not suitable for larger contents and different data sets. For working with large data sets various ELM algorithms are available in literature. However the existing algorithms using fixed activation function and it may lead deficiency in working with large data. In this paper, we proposed novel ELM comply with sigmoid activation function. The experimental evaluations demonstrate the our ELM-S algorithm is performing better than ELM,SVM and other state of art algorithms on large data sets.


2021 ◽  
Vol 14 (11) ◽  
pp. 2369-2382
Author(s):  
Monica Chiosa ◽  
Thomas B. Preußer ◽  
Gustavo Alonso

Data analysts often need to characterize a data stream as a first step to its further processing. Some of the initial insights to be gained include, e.g., the cardinality of the data set and its frequency distribution. Such information is typically extracted by using sketch algorithms, now widely employed to process very large data sets in manageable space and in a single pass over the data. Often, analysts need more than one parameter to characterize the stream. However, computing multiple sketches becomes expensive even when using high-end CPUs. Exploiting the increasing adoption of hardware accelerators, this paper proposes SKT , an FPGA-based accelerator that can compute several sketches along with basic statistics (average, max, min, etc.) in a single pass over the data. SKT has been designed to characterize a data set by calculating its cardinality, its second frequency moment, and its frequency distribution. The design processes data streams coming either from PCIe or TCP/IP, and it is built to fit emerging cloud service architectures, such as Microsoft's Catapult or Amazon's AQUA. The paper explores the trade-offs of designing sketch algorithms on a spatial architecture and how to combine several sketch algorithms into a single design. The empirical evaluation shows how SKT on an FPGA offers a significant performance gain over high-end, server-class CPUs.


Sign in / Sign up

Export Citation Format

Share Document