pH Control in Anaerobic Treatment of Industrial Wastewater

1992 ◽  
Vol 118 (4) ◽  
pp. 551-567 ◽  
Author(s):  
G. K. Anderson ◽  
G. Yang
1998 ◽  
Vol 38 (4-5) ◽  
pp. 29-35 ◽  
Author(s):  
C. J. Banks ◽  
P. N. Humphreys

The stability and operational performance of single stage digestion with and without liquor recycle and two stage digestion were assessed using a mixture of paper and wood as the digestion substrate. Attempts to maintain stable digestion in both single stage reactors were unsuccessful due to the inherently low natural buffering capacity exhibited; this resulted in a rapid souring of the reactor due to unbuffered volatile fatty acid (VFA) accumulation. The use of lime to control pH was unsatisfactory due to interference with the carbonate/bicarbonate equilibrium resulting in wide oscillations in the control parameter. The two stage system overcame the pH stability problems allowing stable operation for a period of 200 days without any requirement for pH control; this was attributed to the rapid flushing of VFA from the first stage reactor into the second stage, where efficient conversion to methane was established. Reactor performance was judged to be satisfactory with the breakdown of 53% of influent volatile solids. It was concluded that the reactor configuration of the two stage system offers the potential for the treatment of cellulosic wastes with a sub-optimal carbon to nitrogen ratio for conventional digestion.


2002 ◽  
Vol 45 (10) ◽  
pp. 321-328 ◽  
Author(s):  
H.J. Gijzen

After the discovery of methane gas by Alessandro Volta in 1776, it took about 100 years before anaerobic processes for the treatment of wastewater and sludges were introduced. The development of high rate anaerobic digesters for the treatment of sewage and industrial wastewater took until the nineteen-seventies and for solid waste even till the nineteen-eighties. All digesters have in common that they apply natural anaerobic consortia of microorganisms for degradation and transformation processes. In view of this, it could be rewarding to evaluate the efficiency of natural ecosystems for their possible application. Examples of high rate anaerobic natural systems include the forestomach of ruminants and the hindgut of certain insects, such as termites and cockroaches. These “natural reactors” exhibit volumetric methane production rates as high as 35 l/l.d. The development of anaerobic reactors based on such natural anaerobic systems could produce eco-technologies for the effective management of a wide variety of solid wastes and industrial wastewater. Important limitations of anaerobic treatment of domestic sewage relate to the absence of nutrient and pathogen removal. A combination of anaerobic pre-treatment followed by photosynthetic post-treatment is proposed for the effective recovery of energy and nutrients from sewage. This eco-technology approach is based on the recognition that the main nutrient assimilating capacity is housed in photosynthetic plants. The proposed anaerobic-photosynthetic process is energy efficient, cost effective and applicable under a wide variety of rural and urban conditions. In conclusion: a natural systems approach towards waste management could generate affordable eco-technologies for effective treatment and resource recovery.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1546
Author(s):  
Monika Vítězová ◽  
Anna Kohoutová ◽  
Tomáš Vítěz ◽  
Nikola Hanišáková ◽  
Ivan Kushkevych

Over the past decades, anaerobic biotechnology is commonly used for treating high-strength wastewaters from different industries. This biotechnology depends on interactions and co-operation between microorganisms in the anaerobic environment where many pollutants’ transformation to energy-rich biogas occurs. Properties of wastewater vary across industries and significantly affect microbiome composition in the anaerobic reactor. Methanogenic archaea play a crucial role during anaerobic wastewater treatment. The most abundant acetoclastic methanogens in the anaerobic reactors for industrial wastewater treatment are Methanosarcina sp. and Methanotrix sp. Hydrogenotrophic representatives of methanogens presented in the anaerobic reactors are characterized by a wide species diversity. Methanoculleus sp., Methanobacterium sp. and Methanospirillum sp. prevailed in this group. This work summarizes the relation of industrial wastewater composition and methanogen microbial communities present in different reactors treating these wastewaters.


1988 ◽  
Vol 20 (4-5) ◽  
pp. 189-198 ◽  
Author(s):  
H. Bode

The paper evaluates the question of whether a combined anaerobic-aerobic or a solely aerobic treatment of some particular industrial wastewaters leads to better results. Therefore three different industrial wastewaters were treated in two different process lines: one line consisted of anaerobic treatment prior to aerobic treatment and in the other, only aerobic treatment was applied. The experiments were run with wastewater from:–the pectin industry–the sugar industry (beet sugar)–the animal pulp industry. The data presented in this paper were gained from experimental work which was conducted over a period of two years. Different scales of treatment plants were used. The anaerobic treatment was done in full- and semitechnical scale reactors, while the aerobic treatment took place in labscale and semitechnical scale plants. Surprisingly in all three cases the solely aerobic treatment led to slightly better results in terms of residual pollution. Finally the paper presents data gained from a recently built, full-scale anaerobic-aerobic process which treats pectin waste. The aerobic stage of the process was designed on the basis of the results from the experimental work which was mentioned above. The results from the former experimental work and from the full-scale operation are compared.


RSC Advances ◽  
2014 ◽  
Vol 4 (101) ◽  
pp. 57580-57586 ◽  
Author(s):  
Chunjie Li ◽  
Salma Tabassum ◽  
Zhenjia Zhang

A state-of-the-art advanced anaerobic expanded granular sludge bed (AnaEG) was developed for the anaerobic treatment of coal gasification wastewater (typical industrial wastewater with poor biodegradability and high toxicity).


2021 ◽  
Vol 937 (4) ◽  
pp. 042052
Author(s):  
Galina Ambrosova ◽  
Anastasiia Kruglikova

Abstract This scientific work is devoted to the results of the local treatment facilities’ work for food enterprises sewerage. The complex under consideration is intended for the anaerobic processing of whey, formed during fermented milk production. Whey is one of the specific organic substances, which main component is lactose (sucrose). It is converted under anaerobic conditions into lactic acid, which is a metabolic dead end. The capacity can be used as a homogenizing tank, obtained in this way. In the future, it is proposed to increase the homogenizer volume to 100 m3. It is recommended to use ammonium hydroxide or sulfate to ensure the required ratio between COD and biogenic element (nitrogen) in the loaded whey. Possible biogenic additives can be sewage sludge or slurry. The experience of adjustment was shown that slurry from cattle farms was quite simple, inexpensive and quite effective. Slurry can be injected in 3-4 m3 every 2-3 days. The stability of pH values in the bioreactor can be ensured by the correct placement of sensors for monitoring this indicator and by changing the method of alkali introduction. It is recommended to install pH control sensors at the bottom of the bioreactor, instead of whey loading pipeline. In order to provide for fractional injection of alkali, we should introduce part of the alkali at the homogenization stage, and part directly into the bioreactor. For an unimpeded build-up of anaerobic biomass, it is recommended to replace the centrifuge thickener operating with flocculant with the classic version of thickening in a compactor without flocculant adding.


1983 ◽  
Vol 15 (8-9) ◽  
pp. 169-176 ◽  
Author(s):  
John S Jeris

Pilot plant results of anaerobic treatment using granular biological fluidized bed treatment for a number of industrial wastes is presented. Wastes containing from 5,000 to 54,000 mg/ℓ, were treated with 65 to 95 percent COD removal in 0.3 to 4.9 days hydraulic detention time. Organic loadings of 3 to 38 kg COD/m3-day were used. An energy comparison showed anaerobic treatment to produce a positive energy balance compared to an energy need for comparable activated sludge treatment.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1425
Author(s):  
N. Anes García ◽  
F. Blanco Álvarez ◽  
A. L. Marqués Sierra

The main objective of this study is the potential evaluation of obtaining bioplastics through biodegradable polyesters synthesized by bacteria, present in the anaerobic treatment of urban and industrial wastewater, which have a series of characteristics to consider as their processing as material bioplastic In Asturias, more than 70,000 tons of sludge are produced and, by applying circular economy criteria and technologies for the production of bioplastics from wastewater, a synergy could be obtained that would allow the reuse of sludge by valorization as raw material. to produce bioplastics. This valorization can be carried out mainly through the combination of two technologies, on the one hand, anaerobic fermentation to produce volatile fatty acids and on the other the generation of bacterial populations that produce Polyhydroxyalkanoates (PHA’s). The PHAs are obtained from the microorganisms present in the sludge generated in the wastewater treatment process.


Sign in / Sign up

Export Citation Format

Share Document