Seismic Joints in Steel Frame Building Construction

Author(s):  
C. Mark Saunders
2019 ◽  
Vol 10 (1) ◽  
pp. 48-55
Author(s):  
Parthasarathi N. ◽  
Satyanarayanan K.S. ◽  
Prakash M. ◽  
Thamilarasu V.

Purpose Progressive collapse because of high temperatures arising from an explosion, vehicle impact or fire is an important issue for structural failure in high-rise buildings. Design/methodology/approach The present study, using ABAQUS software for the analysis, investigated the progressive collapse of a two-dimensional, three-bay, four-storey steel frame structure from high-temperature stresses. Findings After structure reaches the temperature results like displacement, stress axial load and shear force are discussed. Research limitations/implications Different temperatures were applied to the columns at different heights of a structure framed with various materials. Progressive collapse load combinations were also applied as per general service administration guidelines. Originality/value This study covered both steady-state and transient-state conditions of a multistorey-frame building subjected to a rise in temperature in the corner columns and intermediate columns. The columns in the framed structure were subjected to high temperatures at different heights, and the resulting displacements, stresses and axial loads were obtained, analysed and discussed.


Author(s):  
S. V. Yushchube ◽  
I. I. Podshivalov ◽  
G. I. Tayukin

The paper analyzes the influence of defects detected in a monolithic base slab on the possibility of its further application in the construction of a 25-storey high-rise frame building. Non destructive testing and vertical core sampling techniques are used for the detailed analysis of the monolithic base slab. It is found that irregularities in the procedure during winter concreting of the base slab decreases the strength properties of concrete and provides the defect formation in the slab structure, namely delamination of the lower protective concrete layer and uncovering of working reinforcement. For the safe use of the 25-storey high-rise building, the base slab is proposed to be strengthened by adding in-situ reinforced concrete layer 100 cm thick.


2003 ◽  
Vol 19 (2) ◽  
pp. 309-315
Author(s):  
Robert E. Shaw

FEMA-353, Recommended Specifications and Quality Assurance Guidelines for Steel Moment-Frame Construction for Seismic Applications, contains numerous provisions related to the materials, details, quality, and inspection of steel moment-frame buildings in seismic regions. These provisions continue to evolve as industry standards and practices are reviewed, modified, and adopted to meet the need for good seismic performance. Those writing project specifications must remain current with new industry developments and standards.


2019 ◽  
Vol 10 (4) ◽  
pp. 435-445 ◽  
Author(s):  
Joakim Sandström

Purpose This paper aims to discuss fire safety design of single-story, single compartment buildings and evaluates whether time to structural damage is a relevant criterion when lethal fire conditions develop long before any structural fire damage can occur. Design/methodology/approach The proposed approach is demonstrated in a design case study of a steel truss in a typical Swedish single-story steel frame building. Findings While not complying with deemed to satisfy fire resistance ratings, it is argued that the proposed design still can fulfill the life safety objective. Originality/value This paper presents practical application of a conceptual paper presenting a general approach to structural fire safety design and the life safety objective.


Sign in / Sign up

Export Citation Format

Share Document