Semantic Deep Learning Integrated with RGB Feature-Based Rule Optimization for Facility Surface Corrosion Detection and Evaluation

2021 ◽  
Vol 35 (6) ◽  
pp. 04021018
Author(s):  
Atiqur Rahman ◽  
Zheng Yi Wu ◽  
Rony Kalfarisi
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew P. Creagh ◽  
Florian Lipsmeier ◽  
Michael Lindemann ◽  
Maarten De Vos

AbstractThe emergence of digital technologies such as smartphones in healthcare applications have demonstrated the possibility of developing rich, continuous, and objective measures of multiple sclerosis (MS) disability that can be administered remotely and out-of-clinic. Deep Convolutional Neural Networks (DCNN) may capture a richer representation of healthy and MS-related ambulatory characteristics from the raw smartphone-based inertial sensor data than standard feature-based methodologies. To overcome the typical limitations associated with remotely generated health data, such as low subject numbers, sparsity, and heterogeneous data, a transfer learning (TL) model from similar large open-source datasets was proposed. Our TL framework leveraged the ambulatory information learned on human activity recognition (HAR) tasks collected from wearable smartphone sensor data. It was demonstrated that fine-tuning TL DCNN HAR models towards MS disease recognition tasks outperformed previous Support Vector Machine (SVM) feature-based methods, as well as DCNN models trained end-to-end, by upwards of 8–15%. A lack of transparency of “black-box” deep networks remains one of the largest stumbling blocks to the wider acceptance of deep learning for clinical applications. Ensuing work therefore aimed to visualise DCNN decisions attributed by relevance heatmaps using Layer-Wise Relevance Propagation (LRP). Through the LRP framework, the patterns captured from smartphone-based inertial sensor data that were reflective of those who are healthy versus people with MS (PwMS) could begin to be established and understood. Interpretations suggested that cadence-based measures, gait speed, and ambulation-related signal perturbations were distinct characteristics that distinguished MS disability from healthy participants. Robust and interpretable outcomes, generated from high-frequency out-of-clinic assessments, could greatly augment the current in-clinic assessment picture for PwMS, to inform better disease management techniques, and enable the development of better therapeutic interventions.


2021 ◽  
Vol 7 (3) ◽  
pp. 51
Author(s):  
Emanuela Paladini ◽  
Edoardo Vantaggiato ◽  
Fares Bougourzi ◽  
Cosimo Distante ◽  
Abdenour Hadid ◽  
...  

In recent years, automatic tissue phenotyping has attracted increasing interest in the Digital Pathology (DP) field. For Colorectal Cancer (CRC), tissue phenotyping can diagnose the cancer and differentiate between different cancer grades. The development of Whole Slide Images (WSIs) has provided the required data for creating automatic tissue phenotyping systems. In this paper, we study different hand-crafted feature-based and deep learning methods using two popular multi-classes CRC-tissue-type databases: Kather-CRC-2016 and CRC-TP. For the hand-crafted features, we use two texture descriptors (LPQ and BSIF) and their combination. In addition, two classifiers are used (SVM and NN) to classify the texture features into distinct CRC tissue types. For the deep learning methods, we evaluate four Convolutional Neural Network (CNN) architectures (ResNet-101, ResNeXt-50, Inception-v3, and DenseNet-161). Moreover, we propose two Ensemble CNN approaches: Mean-Ensemble-CNN and NN-Ensemble-CNN. The experimental results show that the proposed approaches outperformed the hand-crafted feature-based methods, CNN architectures and the state-of-the-art methods in both databases.


2018 ◽  
Vol 10 (6) ◽  
pp. 964 ◽  
Author(s):  
Zhenfeng Shao ◽  
Ke Yang ◽  
Weixun Zhou

Benchmark datasets are essential for developing and evaluating remote sensing image retrieval (RSIR) approaches. However, most of the existing datasets are single-labeled, with each image in these datasets being annotated by a single label representing the most significant semantic content of the image. This is sufficient for simple problems, such as distinguishing between a building and a beach, but multiple labels and sometimes even dense (pixel) labels are required for more complex problems, such as RSIR and semantic segmentation.We therefore extended the existing multi-labeled dataset collected for multi-label RSIR and presented a dense labeling remote sensing dataset termed "DLRSD". DLRSD contained a total of 17 classes, and the pixels of each image were assigned with 17 pre-defined labels. We used DLRSD to evaluate the performance of RSIR methods ranging from traditional handcrafted feature-based methods to deep learning-based ones. More specifically, we evaluated the performances of RSIR methods from both single-label and multi-label perspectives. These results demonstrated the advantages of multiple labels over single labels for interpreting complex remote sensing images. DLRSD provided the literature a benchmark for RSIR and other pixel-based problems such as semantic segmentation.


2021 ◽  
Vol 297 ◽  
pp. 01072
Author(s):  
Rajae Bensoltane ◽  
Taher Zaki

Aspect category detection (ACD) is a task of aspect-based sentiment analysis (ABSA) that aims to identify the discussed category in a given review or sentence from a predefined list of categories. ABSA tasks were widely studied in English; however, studies in other low-resource languages such as Arabic are still limited. Moreover, most of the existing Arabic ABSA work is based on rule-based or feature-based machine learning models, which require a tedious task of feature-engineering and the use of external resources like lexicons. Therefore, the aim of this paper is to overcome these shortcomings by handling the ACD task using a deep learning method based on a bidirectional gated recurrent unit model. Additionally, we examine the impact of using different vector representation models on the performance of the proposed model. The experimental results show that our model outperforms the baseline and related work models significantly by achieving an enhanced F1-score of more than 7%.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
David O. Nahmias ◽  
Eugene F. Civillico ◽  
Kimberly L. Kontson

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5310
Author(s):  
Lai Kang ◽  
Yingmei Wei ◽  
Jie Jiang ◽  
Yuxiang Xie

Cylindrical panorama stitching is able to generate high resolution images of a scene with a wide field-of-view (FOV), making it a useful scene representation for applications like environmental sensing and robot localization. Traditional image stitching methods based on hand-crafted features are effective for constructing a cylindrical panorama from a sequence of images in the case when there are sufficient reliable features in the scene. However, these methods are unable to handle low-texture environments where no reliable feature correspondence can be established. This paper proposes a novel two-step image alignment method based on deep learning and iterative optimization to address the above issue. In particular, a light-weight end-to-end trainable convolutional neural network (CNN) architecture called ShiftNet is proposed to estimate the initial shifts between images, which is further optimized in a sub-pixel refinement procedure based on a specified camera motion model. Extensive experiments on a synthetic dataset, rendered photo-realistic images, and real images were carried out to evaluate the performance of our proposed method. Both qualitative and quantitative experimental results demonstrate that cylindrical panorama stitching based on our proposed image alignment method leads to significant improvements over traditional feature based methods and recent deep learning based methods for challenging low-texture environments.


2020 ◽  
Vol 12 (14) ◽  
pp. 2229
Author(s):  
Haojie Liu ◽  
Hong Sun ◽  
Minzan Li ◽  
Michihisa Iida

Maize plant detection was conducted in this study with the goals of target fertilization and reduction of fertilization waste in weed spots and gaps between maize plants. The methods used included two types of color featuring and deep learning (DL). The four color indices used were excess green (ExG), excess red (ExR), ExG minus ExR, and the hue value from the HSV (hue, saturation, and value) color space, while the DL methods used were YOLOv3 and YOLOv3_tiny. For practical application, this study focused on performance comparison in detection accuracy, robustness to complex field conditions, and detection speed. Detection accuracy was evaluated by the resulting images, which were divided into three categories: true positive, false positive, and false negative. The robustness evaluation was performed by comparing the average intersection over union of each detection method across different sub–datasets—namely original subset, blur processing subset, increased brightness subset, and reduced brightness subset. The detection speed was evaluated by the indicator of frames per second. Results demonstrated that the DL methods outperformed the color index–based methods in detection accuracy and robustness to complex conditions, while they were inferior to color feature–based methods in detection speed. This research shows the application potential of deep learning technology in maize plant detection. Future efforts are needed to improve the detection speed for practical applications.


Sign in / Sign up

Export Citation Format

Share Document