Size Effect in Transverse Compressive Strength of Composites Analyzed by the Fixed Crack Model

2021 ◽  
Vol 147 (10) ◽  
pp. 04021074
Author(s):  
Jing Xue ◽  
Kedar Kirane
2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


Author(s):  
Anastasios M. Ioannides

Application of fracture mechanics concepts developed in various branches of engineering to the pavement problem can address current limitations, thereby advancing considerably existing pavement design procedures. The state of the art in fracture mechanics applications to pavement engineering is summarized, and an in-depth discussion of one of the major concerns in such applications, the specimen-size effect, is provided. It is concluded that the fictitious crack model proposed by Hillerborg appears most promising for computerized application to pavements. The similitude concepts developed by Bache will be very useful in such efforts. Both the desirability and the scarcity of suitable candidates to replace Miner’s cumulative linear fatigue hypothesis in conventional pavement design are confirmed. Fracture mechanics is shown to be a very promising engineering discipline from which innovations could be transplanted to pavement activities. Nonetheless, it is pointed out that rather slow progress characterizes fracture mechanics developments in general. Pavement engineers clearly need to remain abreast of and involved in fracture mechanics activities.


Author(s):  
Han Zhang ◽  
Haitao Li ◽  
Chaokun Hong ◽  
Zhenhua Xiong ◽  
Rodolfo Lorenzo ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Enrico Quagliarini ◽  
Gianluca Maracchini

Earth has been used as construction material since prehistoric times, and it is still utilized nowadays in both developed and developing countries. Heritage conservation purposes and its intrinsic environmental benefits have led researchers to investigate the mechanical behaviour of this material. However, while a lot of works concern with rammed earth, CEB, and adobe techniques, very few studies are directed towards cob, which is an alternative to the more diffused rammed earth and adobe in specific geographic conditions. Due to this lack, this paper presents an experimental program aimed at assessing the failure mode and the main mechanical properties of cob earth walls (compressive strength, Young’s modulus, and Poisson’s ratio) through monotonic axial compression tests. Results show that, if compared with CEB, adobe, and rammed earth, cob has the lowest compressive strength, the lowest modulus of elasticity, and Poisson’s ratio. Differences are also found by comparing results with those obtained for other cob techniques, underlining both the high regional variability of cob and the need of performing more research on this topic. A strong dependence of material properties on loading rate and water content seems to exist too. Finally, the ability of a common analytical method used for masonry structures (an FEM macromodelling with a total strain rotating crack model) to represent the mechanical behaviour of cob walls is showed.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Keun-Hyeok Yang ◽  
Yongjei Lee ◽  
Ju-Hyun Mun

In this study, a stress-strain model for unconfined concrete with the consideration of the size effect was proposed. The compressive strength model that is based on the function of specimen width and aspect ratio was used for determining the maximum stress. In addition, in stress-strain relationship, a strain at the maximum stress was formulated as a function of compressive strength considering the size effect using the nonlinear regression analysis of data records compiled from a wide variety of specimens. The descending branch after the maximum stress was formulated with the consideration of the effect of decreasing area of fracture energy with the increase in equivalent diameter and aspect ratio of the specimen in the compression damage zone (CDZ) model. The key parameter for the slope of the descending branch was formulated as a function of equivalent diameter and aspect ratio of the specimen, concrete density, and compressive strength of concrete. Consequently, a rational stress-strain model for unconfined concrete was proposed. This model reflects trends that the maximum stress and strain at the peak stress decrease and the slope of the descending branch increases, when the equivalent diameter and aspect ratio of the specimen increase. The proposed model agrees well with the test results, irrespective of the compressive strength of concrete, concrete type, equivalent diameter, and aspect ratio of the specimen.


2013 ◽  
Vol 351-352 ◽  
pp. 422-426
Author(s):  
Yong Ping Xie ◽  
Lei Jia ◽  
Gang Sun

With the development of modern constructional technique, more attention on the size effect is paid by academics and engineers. The normal section bearing capacity of Reinforced Concrete Column is analyzed by eccentrically compressed theory firstly. The size effect on normal section bearing capacity of reinforced concrete column is obtained by theoretical analysis and experimental summary. The size effect formula of concrete compressive strength is proposed. Finally, a research thinking of size effect on bearing capacity is suggested.


2013 ◽  
Vol 19 (7) ◽  
pp. 1964-1968
Author(s):  
Dongping L ◽  
Jun Li ◽  
Yangjian Xu ◽  
Wei Wei

2012 ◽  
Vol 229-231 ◽  
pp. 233-238 ◽  
Author(s):  
Ze Hui Chen ◽  
Chang Wu Liu ◽  
Ji Wei Deng

Using the MTS testing machine, the uniaxial compressive test of varisized da-qing limestones were undertaken, and the effect of dimensions about compressive strength, peak strain, elastic modulus and destructional forms of rock specimens were studied. It demonstrates that along with the increase of length-diameter ratio, peak strain and compressive strength turn smaller, elastic modulus gradually increases, the destruction of rock samples have a transformation from splitting failure to shear failure. Combined with the test results, Obert L model and Yang Shengqi model, the two size-effect models with extensive applications are analyzed and contrasted. And the conclusion is drawn that Obert L model has a relatively broad applicability, while Yang Shengqi model has a stronger Targeting and higher accuracy. Thus based on the Yang Shengqi model, the size-effect model of da-qing limestone is put forward, and the result indicates that this model corresponds well with the test results, having certain practical value.


Sign in / Sign up

Export Citation Format

Share Document